
The Reference Book
Version: 4.0

generated on May 24, 2018

The Reference Book (4.0)

This work is licensed under the “Attribution-Share Alike 3.0 Unported” license (http://creativecommons.org/
licenses/by-sa/3.0/).

You are free to share (to copy, distribute and transmit the work), and to remix (to adapt the work) under the
following conditions:

• Attribution: You must attribute the work in the manner specified by the author or licensor (but not in
any way that suggests that they endorse you or your use of the work).

• Share Alike: If you alter, transform, or build upon this work, you may distribute the resulting work only
under the same, similar or a compatible license. For any reuse or distribution, you must make clear to
others the license terms of this work.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor SensioLabs shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by
the information contained in this work.

If you find typos or errors, feel free to report them by creating a ticket on the Symfony ticketing system
(http://github.com/symfony/symfony-docs/issues). Based on tickets and users feedback, this book is
continuously updated.

Contents at a Glance

FrameworkBundle Configuration ("framework")..6
DoctrineBundle Configuration ("doctrine")..30
SecurityBundle Configuration ("security")..38
SwiftmailerBundle Configuration ("swiftmailer")..48
TwigBundle Configuration ("twig") ...54
MonologBundle Configuration ("monolog") ..60
WebProfilerBundle Configuration ("web_profiler") ..62
DebugBundle Configuration ("debug") ..64
Configuring in the Kernel ..66
Form Types Reference...68
TextType Field ...70
TextareaType Field ...75
EmailType Field..80
IntegerType Field..85
MoneyType Field..91
NumberType Field..97
PasswordType Field .. 103
PercentType Field ... 108
SearchType Field .. 114
UrlType Field.. 118
RangeType Field ... 123
TelType Field.. 128
ColorType Field.. 133
ChoiceType Field (select drop-downs, radio buttons & checkboxes) .. 138
EntityType Field ... 152
CountryType Field.. 164
LanguageType Field .. 171
LocaleType Field... 178
TimezoneType Field ... 185
CurrencyType Field .. 193
DateType Field ... 200
DateIntervalType Field.. 208
DateTimeType Field ... 215
TimeType Field... 222
BirthdayType Field.. 229
CheckboxType Field ... 234

PDF brought to you by

generated on May 24, 2018

Contents at a Glance | iii

http://sensiolabs.com

FileType Field ... 239
RadioType Field.. 244
CollectionType Field... 249
RepeatedType Field .. 259
HiddenType Field ... 264
ButtonType Field .. 267
ResetType Field .. 269
SubmitType Field.. 271
FormType Field .. 274
Validation Constraints Reference... 283
NotBlank.. 285
Blank.. 287
NotNull.. 289
IsNull ... 291
IsTrue... 293
IsFalse .. 295
Type... 297
Email.. 300
Length .. 302
Url.. 305
Regex ... 308
Ip ... 311
Uuid... 314
Range ... 316
EqualTo ... 319
NotEqualTo.. 321
IdenticalTo ... 323
NotIdenticalTo ... 325
LessThan .. 327
LessThanOrEqual ... 330
GreaterThan ... 333
GreaterThanOrEqual .. 336
Date ... 339
DateTime ... 341
Time... 343
Choice.. 345
Collection... 349
Count... 353
UniqueEntity .. 355
Language .. 358
Locale... 360
Country.. 362
File ... 364
Image ... 368
CardScheme ... 374
Currency .. 376
Luhn .. 378

iv | Contents at a Glance Contents at a Glance | 4

Iban.. 380
Bic.. 382
Isbn .. 384
Issn... 386
Callback ... 388
Expression.. 392
All .. 395
UserPassword ... 397
Valid .. 399
Twig Template Form Function and Variable Reference .. 402
Symfony Twig Extensions ... 408
Built-in Symfony Service Tags.. 420
Built-in Symfony Events .. 433
Requirements for Running Symfony .. 437

PDF brought to you by

generated on May 24, 2018

Contents at a Glance | v

http://sensiolabs.com

Listing 1-1

Chapter 1

FrameworkBundle Configuration
("framework")

The FrameworkBundle defines the main framework configuration, from sessions and translations to
forms, validation, routing and more. All these options are configured under the framework key in your
application configuration.

1
2
3
4
5

displays the default config values defined by Symfony
$ php bin/console config:dump framework

displays the actual config values used by your application
$ php bin/console debug:config framework

When using XML, you must use the http://symfony.com/schema/dic/symfony namespace
and the related XSD schema is available at: http://symfony.com/schema/dic/symfony/
symfony-1.0.xsd

Configuration
• secret

• http_method_override

• ide

• test

• default_locale

• trusted_hosts
• form

• enabled

PDF brought to you by

generated on May 24, 2018

Chapter 1: FrameworkBundle Configuration ("framework") | 6

http://sensiolabs.com

• csrf_protection

• enabled

• esi

• enabled

• fragments

• enabled
• path

• profiler

• enabled
• collect
• only_exceptions
• only_master_requests
• dsn

• request:

• formats

• router

• resource
• type
• http_port
• https_port
• strict_requirements

• session

• storage_id
• handler_id
• name
• cookie_lifetime
• cookie_path
• cookie_domain
• cookie_secure
• cookie_httponly
• gc_divisor
• gc_probability
• gc_maxlifetime
• save_path
• metadata_update_threshold

• assets

• base_path
• base_urls
• packages
• version_strategy
• version
• version_format
• json_manifest_path

PDF brought to you by

generated on May 24, 2018

Chapter 1: FrameworkBundle Configuration ("framework") | 7

http://sensiolabs.com

• templating

• hinclude_default_template
• form

• resources

• cache

• engines

• loaders

• translator

• enabled
• fallbacks
• logging
• paths

• property_access

• magic_call
• throw_exception_on_invalid_index

• validation

• enabled

• cache

• enable_annotations

• translation_domain

• strict_email
• mapping

• paths

• annotations

• cache
• file_cache_dir
• debug

• serializer

• enabled

• enable_annotations

• name_converter

• circular_reference_handler
• mapping

• paths

• php_errors

• log
• throw

PDF brought to you by

generated on May 24, 2018

Chapter 1: FrameworkBundle Configuration ("framework") | 8

http://sensiolabs.com

• cache

• app

• system

• directory

• default_doctrine_provider

• default_psr6_provider

• default_redis_provider

• default_memcached_provider
• pools

• name

• adapter
• public
• default_lifetime
• provider
• clearer

• prefix_seed

• lock

secret

type: string required

This is a string that should be unique to your application and it's commonly used to add more entropy
to security related operations. Its value should be a series of characters, numbers and symbols chosen
randomly and the recommended length is around 32 characters.

In practice, Symfony uses this value for encrypting the cookies used in the remember me functionality and
for creating signed URIs when using ESI (Edge Side Includes).

This option becomes the service container parameter named kernel.secret, which you can use
whenever the application needs an immutable random string to add more entropy.

As with any other security-related parameter, it is a good practice to change this value from time to
time. However, keep in mind that changing this value will invalidate all signed URIs and Remember Me
cookies. That's why, after changing this value, you should regenerate the application cache and log out
all the application users.

http_method_override

type: boolean default: true

This determines whether the _method request parameter is used as the intended HTTP method on
POST requests. If enabled, the Request::enableHttpMethodParameterOverride1 method gets
called automatically. It becomes the service container parameter named
kernel.http_method_override.

For more information, see How to Change the Action and Method of a Form.

1. https://api.symfony.com/4.0/Symfony/Component/HttpFoundation/Request.html#method_enableHttpMethodParameterOverride

PDF brought to you by

generated on May 24, 2018

Chapter 1: FrameworkBundle Configuration ("framework") | 9

http://sensiolabs.com

Listing 1-2

Listing 1-3

If you're using the HttpCache Reverse Proxy with this option, the kernel will ignore the _method
parameter, which could lead to errors.

To fix this, invoke the enableHttpMethodParameterOverride() method before creating the
Request object:

1
2
3
4
5
6
7
8

// public/index.php

// ...
$kernel = new CacheKernel($kernel);

Request::enableHttpMethodParameterOverride(); // <-- add this line
$request = Request::createFromGlobals();
// ...

trusted_proxies

The trusted_proxies option was removed in Symfony 3.3. See How to Configure Symfony to Work
behind a Load Balancer or a Reverse Proxy.

ide

type: string default: null

Symfony turns file paths seen in variable dumps and exception messages into links that open those files
right inside your browser. If you prefer to open those files in your favorite IDE or text editor, set this
option to any of the following values: phpstorm, sublime, textmate, macvim and emacs.

The phpstorm option is supported natively by PhpStorm on MacOS, Windows requires
PhpStormProtocol2 and Linux requires phpstorm-url-handler3.

If you use another editor, the expected configuration value is a URL template that contains an %f
placeholder where the file path is expected and %l placeholder for the line number (percentage signs (%)
must be escaped by doubling them to prevent Symfony from interpreting them as container parameters).

1
2
3

config/packages/framework.yaml
framework:

ide: 'myide://open?url=file://%%f&line=%%l'

Since every developer uses a different IDE, the recommended way to enable this feature is to configure
it on a system level. This can be done by setting the xdebug.file_link_format option in your
php.ini configuration file. The format to use is the same as for the framework.ide option, but
without the need to escape the percent signs (%) by doubling them.

If both framework.ide and xdebug.file_link_format are defined, Symfony uses the value
of the xdebug.file_link_format option.

Setting the xdebug.file_link_format ini option works even if the Xdebug extension is not
enabled.

2. https://github.com/aik099/PhpStormProtocol

3. https://github.com/sanduhrs/phpstorm-url-handler

PDF brought to you by

generated on May 24, 2018

Chapter 1: FrameworkBundle Configuration ("framework") | 10

http://sensiolabs.com

Listing 1-4

Listing 1-5

When running your app in a container or in a virtual machine, you can tell Symfony to map files
from the guest to the host by changing their prefix. This map should be specified at the end of the
URL template, using & and > as guest-to-host separators:

// /path/to/guest/.../file will be opened
// as /path/to/host/.../file on the host
// and /foo/.../file as /bar/.../file also
'myide://%f:%l&/path/to/guest/>/path/to/host/&/foo/>/bar/&...'

test

type: boolean

If this configuration setting is present (and not false), then the services related to testing your
application (e.g. test.client) are loaded. This setting should be present in your test environment
(usually via config/packages/test/framework.yaml).

For more information, see Testing.

default_locale

type: string default: en

The default locale is used if no _locale routing parameter has been set. It is available with the
Request::getDefaultLocale4 method.

You can read more information about the default locale in Setting a Default Locale.

trusted_hosts

type: array | string default: array()

A lot of different attacks have been discovered relying on inconsistencies in handling the Host header
by various software (web servers, reverse proxies, web frameworks, etc.). Basically, every time the
framework is generating an absolute URL (when sending an email to reset a password for instance), the
host might have been manipulated by an attacker.

You can read "HTTP Host header attacks5" for more information about these kinds of attacks.

The Symfony Request::getHost()6 method might be vulnerable to some of these attacks because
it depends on the configuration of your web server. One simple solution to avoid these attacks is
to whitelist the hosts that your Symfony application can respond to. That's the purpose of this
trusted_hosts option. If the incoming request's hostname doesn't match one in this list, the
application won't respond and the user will receive a 400 response.

1
2
3

config/packages/framework.yaml
framework:

trusted_hosts: ['example.com', 'example.org']

Hosts can also be configured using regular expressions (e.g. ^(.+\.)?example.com$), which make it
easier to respond to any subdomain.

4. https://api.symfony.com/4.0/Symfony/Component/HttpFoundation/Request.html#method_getDefaultLocale

5. http://www.skeletonscribe.net/2013/05/practical-http-host-header-attacks.html

6. https://api.symfony.com/4.0/Symfony/Component/HttpFoundation/Request.html#method_getHost

PDF brought to you by

generated on May 24, 2018

Chapter 1: FrameworkBundle Configuration ("framework") | 11

http://sensiolabs.com

Listing 1-6

In addition, you can also set the trusted hosts in the front controller using the
Request::setTrustedHosts() method:

// public/index.php
Request::setTrustedHosts(array('^(.+\.)?example.com$', '^(.+\.)?example.org$'));

The default value for this option is an empty array, meaning that the application can respond to any given
host.

Read more about this in the Security Advisory Blog post7.

form

enabled

type: boolean default: true or false depending on your installation

Whether to enable the form services or not in the service container. If you don't use forms, setting
this to false may increase your application's performance because less services will be loaded into the
container.

This option will automatically be set to true when one of the child settings is configured.

This will automatically enable the validation.

For more details, see Forms.

csrf_protection

For more information about CSRF protection, see How to Implement CSRF Protection.

enabled

type: boolean default: true or false depending on your installation

This option can be used to disable CSRF protection on all forms. But you can also disable CSRF
protection on individual forms.

If you're using forms, but want to avoid starting your session (e.g. using forms in an API-only website),
csrf_protection will need to be set to false.

esi

You can read more about Edge Side Includes (ESI) in Working with Edge Side Includes.

enabled

type: boolean default: false

Whether to enable the edge side includes support in the framework.

7. https://symfony.com/blog/security-releases-symfony-2-0-24-2-1-12-2-2-5-and-2-3-3-released#cve-2013-4752-request-gethost-poisoning

PDF brought to you by

generated on May 24, 2018

Chapter 1: FrameworkBundle Configuration ("framework") | 12

http://sensiolabs.com

Listing 1-7

Listing 1-8

You can also set esi to true to enable it:

1
2
3

config/packages/framework.yaml
framework:

esi: true

fragments

Learn more about fragments in the HTTP Cache article.

enabled

type: boolean default: false

Whether to enable the fragment listener or not. The fragment listener is used to render ESI fragments
independently of the rest of the page.

This setting is automatically set to true when one of the child settings is configured.

path

type: string default: '/_fragment'

The path prefix for fragments. The fragment listener will only be executed when the request starts with
this path.

profiler

enabled

type: boolean default: false

The profiler can be enabled by setting this option to true. When you install it using Symfony Flex, the
profiler is enabled in the dev and test environments.

The profiler works independently from the Web Developer Toolbar, see the WebProfilerBundle
configuration on how to disable/enable the toolbar.

collect

type: boolean default: true

This option configures the way the profiler behaves when it is enabled. If set to true, the profiler collects
data for all requests. If you want to only collect information on-demand, you can set the collect flag
to false and activate the data collectors manually:

$profiler->enable();

only_exceptions

type: boolean default: false

When this is set to true, the profiler will only be enabled when an exception is thrown during the
handling of the request.

PDF brought to you by

generated on May 24, 2018

Chapter 1: FrameworkBundle Configuration ("framework") | 13

http://sensiolabs.com

Listing 1-9

only_master_requests

type: boolean default: false

When this is set to true, the profiler will only be enabled on the master requests (and not on the
subrequests).

dsn

type: string default: 'file:%kernel.cache_dir%/profiler'

The DSN where to store the profiling information.

See Switching the Profiler Storage for more information about the profiler storage.

request

formats

type: array default: []

This setting is used to associate additional request formats (e.g. html) to one or more mime types
(e.g. text/html), which will allow you to use the format & mime types to call
Request::getFormat($mimeType)8 or Request::getMimeType($format)9.

In practice, this is important because Symfony uses it to automatically set the Content-Type header on
the Response (if you don't explicitly set one). If you pass an array of mime types, the first will be used
for the header.

To configure a jsonp format:

1
2
3
4
5

config/packages/framework.yaml
framework:

request:
formats:

jsonp: 'application/javascript'

router

resource

type: string required

The path the main routing resource (e.g. a YAML file) that contains the routes and imports the router
should load.

type

type: string

The type of the resource to hint the loaders about the format. This isn't needed when you use the default
routers with the expected file extensions (.xml, .yml or .yaml, .php).

http_port

type: integer default: 80

8. https://api.symfony.com/4.0/Symfony/Component/HttpFoundation/Request.html#method_getFormat

9. https://api.symfony.com/4.0/Symfony/Component/HttpFoundation/Request.html#method_getMimeType

PDF brought to you by

generated on May 24, 2018

Chapter 1: FrameworkBundle Configuration ("framework") | 14

http://sensiolabs.com

The port for normal http requests (this is used when matching the scheme).

https_port

type: integer default: 443

The port for https requests (this is used when matching the scheme).

strict_requirements

type: mixed default: true

Determines the routing generator behaviour. When generating a route that has specific requirements, the
generator can behave differently in case the used parameters do not meet these requirements.

The value can be one of:
truetrue

Throw an exception when the requirements are not met;

falsefalse

Disable exceptions when the requirements are not met and return null instead;

nullnull

Disable checking the requirements (thus, match the route even when the requirements don't match).

true is recommended in the development environment, while false or null might be preferred in
production.

session

storage_id

type: string default: 'session.storage.native'

The service id used for session storage. The session.storage service alias will be set to this service id.
This class has to implement SessionStorageInterface10.

handler_id

type: string default: 'session.handler.native_file'

The service id used for session storage. The session.handler service alias will be set to this service id.

You can also set it to null, to default to the handler of your PHP installation.

You can see an example of the usage of this in How to Use PdoSessionHandler to Store Sessions in the
Database.

name

type: string default: null

This specifies the name of the session cookie. By default it will use the cookie name which is defined in
the php.ini with the session.name directive.

10. https://api.symfony.com/4.0/Symfony/Component/HttpFoundation/Session/Storage/SessionStorageInterface.html

PDF brought to you by

generated on May 24, 2018

Chapter 1: FrameworkBundle Configuration ("framework") | 15

http://sensiolabs.com

cookie_lifetime

type: integer default: null

This determines the lifetime of the session - in seconds. The default value - null - means that the
session.cookie_lifetime value from php.ini will be used. Setting this value to 0 means the
cookie is valid for the length of the browser session.

cookie_path

type: string default: /

This determines the path to set in the session cookie. By default it will use /.

cookie_domain

type: string default: ''

This determines the domain to set in the session cookie. By default it's blank, meaning the host name of
the server which generated the cookie according to the cookie specification.

cookie_secure

type: boolean default: false

This determines whether cookies should only be sent over secure connections.

cookie_httponly

type: boolean default: true

This determines whether cookies should only be accessible through the HTTP protocol. This means that
the cookie won't be accessible by scripting languages, such as JavaScript. This setting can effectively help
to reduce identity theft through XSS attacks.

gc_divisor

type: integer default: 100

See gc_probability.

gc_probability

type: integer default: 1

This defines the probability that the garbage collector (GC) process is started on every session
initialization. The probability is calculated by using gc_probability / gc_divisor, e.g. 1/100 means
there is a 1% chance that the GC process will start on each request.

gc_maxlifetime

type: integer default: 1440

This determines the number of seconds after which data will be seen as "garbage" and potentially cleaned
up. Garbage collection may occur during session start and depends on gc_divisor and gc_probability.

save_path

type: string default: %kernel.cache_dir%/sessions

PDF brought to you by

generated on May 24, 2018

Chapter 1: FrameworkBundle Configuration ("framework") | 16

http://sensiolabs.com

Listing 1-10

Listing 1-11

Listing 1-12

Listing 1-13

This determines the argument to be passed to the save handler. If you choose the default file handler, this
is the path where the session files are created. For more information, see Configuring the Directory where
Session Files are Saved.

You can also set this value to the save_path of your php.ini by setting the value to null:

1
2
3
4

config/packages/framework.yaml
framework:

session:
save_path: ~

metadata_update_threshold

type: integer default: 0

This is how many seconds to wait between updating/writing the session metadata. This can be useful if,
for some reason, you want to limit the frequency at which the session persists.

Starting in Symfony 3.4, session data is only written when the session data has changed. Previously, you
needed to set this option to avoid that behavior.

assets

base_path

type: string

This option allows you to define a base path to be used for assets:

1
2
3
4
5

config/packages/framework.yaml
framework:

...
assets:

base_path: '/images'

base_urls

type: array

This option allows you to define base URLs to be used for assets. If multiple base URLs are provided,
Symfony will select one from the collection each time it generates an asset's path:

1
2
3
4
5
6

config/packages/framework.yaml
framework:

...
assets:

base_urls:
- 'http://cdn.example.com/'

packages

You can group assets into packages, to specify different base URLs for them:

1
2
3
4
5
6
7

config/packages/framework.yaml
framework:

...
assets:

packages:
avatars:

base_urls: 'http://static_cdn.example.com/avatars'

PDF brought to you by

generated on May 24, 2018

Chapter 1: FrameworkBundle Configuration ("framework") | 17

http://sensiolabs.com

Listing 1-14

Listing 1-15

Listing 1-16

Now you can use the avatars package in your templates:

1

Each package can configure the following options:

• base_path
• base_urls
• version_strategy
• version
• version_format
• json_manifest_path

version

type: string

This option is used to bust the cache on assets by globally adding a query parameter to all rendered
asset paths (e.g. /images/logo.png?v2). This applies only to assets rendered via the Twig asset()
function (or PHP equivalent) as well as assets rendered with Assetic.

For example, suppose you have the following:

1

By default, this will render a path to your image such as /images/logo.png. Now, activate the
version option:

1
2
3
4
5

config/packages/framework.yaml
framework:

...
assets:

version: 'v2'

Now, the same asset will be rendered as /images/logo.png?v2 If you use this feature, you must
manually increment the version value before each deployment so that the query parameters change.

You can also control how the query string works via the version_format option.

This parameter cannot be set at the same time as version_strategy or json_manifest_path.

As with all settings, you can use a parameter as value for the version. This makes it easier to
increment the cache on each deployment.

version_format

type: string default: %%s?%%s

This specifies a sprintf11 pattern that will be used with the version option to construct an asset's path.
By default, the pattern adds the asset's version as a query string. For example, if version_format
is set to %%s?version=%%s and version is set to 5, the asset's path would be /images/
logo.png?version=5.

11. https://secure.php.net/manual/en/function.sprintf.php

PDF brought to you by

generated on May 24, 2018

Chapter 1: FrameworkBundle Configuration ("framework") | 18

http://sensiolabs.com

Listing 1-17

All percentage signs (%) in the format string must be doubled to escape the character. Without
escaping, values might inadvertently be interpreted as Service Parameters.

Some CDN's do not support cache-busting via query strings, so injecting the version into the actual
file path is necessary. Thankfully, version_format is not limited to producing versioned query
strings.

The pattern receives the asset's original path and version as its first and second parameters,
respectively. Since the asset's path is one parameter, you cannot modify it in-place (e.g. /images/
logo-v5.png); however, you can prefix the asset's path using a pattern of version-%%2$s/
%%1$s, which would result in the path version-5/images/logo.png.

URL rewrite rules could then be used to disregard the version prefix before serving the asset.
Alternatively, you could copy assets to the appropriate version path as part of your deployment
process and forgot any URL rewriting. The latter option is useful if you would like older asset
versions to remain accessible at their original URL.

version_strategy

type: string default: null

The service id of the asset version strategy applied to the assets. This option can be set globally for all
assets and individually for each asset package:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

config/packages/framework.yaml
framework:

assets:
this strategy is applied to every asset (including packages)
version_strategy: 'app.asset.my_versioning_strategy'
packages:

foo_package:
this package removes any versioning (its assets won't be versioned)
version: ~

bar_package:
this package uses its own strategy (the default strategy is ignored)
version_strategy: 'app.asset.another_version_strategy'

baz_package:
this package inherits the default strategy
base_path: '/images'

This parameter cannot be set at the same time as version or json_manifest_path.

json_manifest_path

type: string default: null

The file path to a manifest.json file containing an associative array of asset names and their respective
compiled names. A common cache-busting technique using a "manifest" file works by writing out assets
with a "hash" appended to their file names (e.g. main.ae433f1cb.css) during a front-end compilation
routine.

Symfony's Webpack Encore supports outputting hashed assets. Moreover, this can be incorporated
into many other workflows, including Webpack and Gulp using webpack-manifest-plugin12 and gulp-
rev13, respectively.

PDF brought to you by

generated on May 24, 2018

Chapter 1: FrameworkBundle Configuration ("framework") | 19

http://sensiolabs.com

Listing 1-18

Listing 1-19

This option can be set globally for all assets and individually for each asset package:

1
2
3
4
5
6
7
8
9
10
11
12

config/packages/framework.yaml
framework:

assets:
this manifest is applied to every asset (including packages)
json_manifest_path: "%kernel.project_dir%/public/build/manifest.json"
packages:

foo_package:
this package uses its own manifest (the default file is ignored)
json_manifest_path: "%kernel.project_dir%/public/build/a_different_manifest.json"

bar_package:
this package uses the global manifest (the default file is used)
base_path: '/images'

This parameter cannot be set at the same time as version or version_strategy. Additionally,
this option cannot be nullified at the package scope if a global manifest file is specified.

If you request an asset that is not found in the manifest.json file, the original - unmodified - asset
path will be returned.

templating

hinclude_default_template

type: string default: null

Sets the content shown during the loading of the fragment or when JavaScript is disabled. This can be
either a template name or the content itself.

See How to Embed Asynchronous Content with hinclude.js for more information about hinclude.

form

resources

type: string[] default: ['FrameworkBundle:Form']

A list of all resources for form theming in PHP. This setting is not required if you're using the Twig format
for your templates, in that case refer to the form article.

Assume you have custom global form themes in templates/form_themes/, you can configure this
like:

1
2
3
4
5
6

config/packages/framework.yaml
framework:

templating:
form:

resources:
- 'form_themes'

The default form templates from FrameworkBundle:Form will always be included in the form
resources.

12. https://www.npmjs.com/package/webpack-manifest-plugin

13. https://www.npmjs.com/package/gulp-rev

PDF brought to you by

generated on May 24, 2018

Chapter 1: FrameworkBundle Configuration ("framework") | 20

http://sensiolabs.com

See Global Form Theming for more information.

cache

type: string

The path to the cache directory for templates. When this is not set, caching is disabled.

When using Twig templating, the caching is already handled by the TwigBundle and doesn't need to
be enabled for the FrameworkBundle.

engines

type: string[] / string required

The Templating Engine to use. This can either be a string (when only one engine is configured) or an
array of engines.

At least one engine is required.

loaders

type: string[]

An array (or a string when configuring just one loader) of service ids for templating loaders. Templating
loaders are used to find and load templates from a resource (e.g. a filesystem or database). Templating
loaders must implement LoaderInterface14.

translator

enabled

type: boolean default: true or false depending on your installation

Whether or not to enable the translator service in the service container.

fallbacks

type: string|array default: array('en')

This option is used when the translation key for the current locale wasn't found.

For more details, see Translations.

logging

default: true when the debug mode is enabled, false otherwise.

When true, a log entry is made whenever the translator cannot find a translation for a given key.
The logs are made to the translation channel and at the debug for level for keys where there is a
translation in the fallback locale and the warning level if there is no translation to use at all.

14. https://api.symfony.com/4.0/Symfony/Component/Templating/Loader/LoaderInterface.html

PDF brought to you by

generated on May 24, 2018

Chapter 1: FrameworkBundle Configuration ("framework") | 21

http://sensiolabs.com

paths

type: array default: []

This option allows to define an array of paths where the component will look for translation files.

property_access

magic_call

type: boolean default: false

When enabled, the property_accessor service uses PHP's magic __call() method when its
getValue() method is called.

throw_exception_on_invalid_index

type: boolean default: false

When enabled, the property_accessor service throws an exception when you try to access an invalid
index of an array.

validation

enabled

type: boolean default: true or false depending on your installation

Whether or not to enable validation support.

This option will automatically be set to true when one of the child settings is configured.

cache

type: string

The service that is used to persist class metadata in a cache. The service has to implement the
CacheInterface15.

Set this option to validator.mapping.cache.doctrine.apc to use the APC cache provide from
the Doctrine project.

enable_annotations

type: boolean default: false

If this option is enabled, validation constraints can be defined using annotations.

translation_domain

type: string default: validators

The translation domain that is used when translating validation constraint error messages.

strict_email

type: Boolean default: false

15. https://api.symfony.com/4.0/Symfony/Component/Validator/Mapping/Cache/CacheInterface.html

PDF brought to you by

generated on May 24, 2018

Chapter 1: FrameworkBundle Configuration ("framework") | 22

http://sensiolabs.com

If this option is enabled, the egulias/email-validator16 library will be used by the Email constraint
validator. Otherwise, the validator uses a simple regular expression to validate email addresses.

mapping

paths

type: array default: []

This option allows to define an array of paths with files or directories where the component will look for
additional validation files.

annotations

cache

type: string default: 'file'

This option can be one of the following values:
file

Use the filesystem to cache annotations

none
Disable the caching of annotations

a service id
A service id referencing a Doctrine Cache17 implementation

file_cache_dir

type: string default: '%kernel.cache_dir%/annotations'

The directory to store cache files for annotations, in case annotations.cache is set to 'file'.

debug

type: boolean default: %kernel.debug%

Whether to enable debug mode for caching. If enabled, the cache will automatically update when
the original file is changed (both with code and annotation changes). For performance reasons, it is
recommended to disable debug mode in production, which will happen automatically if you use the
default value.

serializer

enabled

type: boolean default: true or false depending on your installation

Whether to enable the serializer service or not in the service container.

enable_annotations

type: boolean default: false

If this option is enabled, serialization groups can be defined using annotations.

16. https://github.com/egulias/EmailValidator

17. http://docs.doctrine-project.org/projects/doctrine-common/en/latest/reference/caching.html

PDF brought to you by

generated on May 24, 2018

Chapter 1: FrameworkBundle Configuration ("framework") | 23

http://sensiolabs.com

For more information, see Using Serialization Groups Annotations.

name_converter

type: string

The name converter to use. The CamelCaseToSnakeCaseNameConverter18 name converter can
enabled by using the serializer.name_converter.camel_case_to_snake_case value.

For more information, see Converting Property Names when Serializing and Deserializing.

circular_reference_handler

type string

The service id that is used as the circular reference handler of the default serializer. The service has to
implement the magic __invoke($object) method.

For more information, see Handling Circular References.

mapping

paths

type: array default: []

This option allows to define an array of paths with files or directories where the component will look for
additional serialization files.

php_errors

log

type: boolean default: false

Use the application logger instead of the PHP logger for logging PHP errors.

throw

type: boolean default: %kernel.debug%

Throw PHP errors as \ErrorException instances. The parameter
debug.error_handler.throw_at controls the threshold.

cache

app

type: string default: cache.adapter.filesystem

The cache adapter used by the cache.app service. The FrameworkBundle ships with multiple adapters:
cache.adapter.apcu, cache.adapter.doctrine, cache.adapter.system,
cache.adapter.filesystem, cache.adapter.psr6, cache.adapter.redis and
cache.adapter.memcached.

18. https://api.symfony.com/4.0/Symfony/Component/Serializer/NameConverter/CamelCaseToSnakeCaseNameConverter.html

PDF brought to you by

generated on May 24, 2018

Chapter 1: FrameworkBundle Configuration ("framework") | 24

http://sensiolabs.com

It might be tough to understand at the beginning, so to avoid confusion remember that all pools
perform the same actions but on different medium given the adapter they are based on. Internally, a
pool wraps the definition of an adapter.

system

type: string default: cache.adapter.system

The cache adapter used by the cache.system service. It supports the same adapters available for the
cache.app service.

directory

type: string default: %kernel.cache_dir%/pools

The path to the cache directory used by services inheriting from the cache.adapter.filesystem
adapter (including cache.app).

default_doctrine_provider

type: string

The service name to use as your default Doctrine provider. The provider is available as the
cache.doctrine service.

default_psr6_provider

type: string

The service name to use as your default PSR-6 provider. It is available as the cache.psr6 service.

default_redis_provider

type: string default: redis://localhost

The DSN to use by the Redis provider. The provider is available as the cache.redis service.

default_memcached_provider

type: string default: memcached://localhost

The DSN to use by the Memcached provider. The provider is available as the cache.memcached
service.

pools

type: array

A list of cache pools to be created by the framework extension.

For more information about how pools works, see cache pools.

name

type: prototype

Name of the pool you want to create.

PDF brought to you by

generated on May 24, 2018

Chapter 1: FrameworkBundle Configuration ("framework") | 25

http://sensiolabs.com

Your pool name must differ from cache.app or cache.system.

adapter

type: string default: cache.app

The name of the adapter to use. You could also use your own implementation.

Your service MUST implement the CacheItemPoolInterface19 interface.

public

type: boolean default: false

Whether your service should be public or not.

default_lifetime

type: integer

Default lifetime of your cache items in seconds.

provider

type: string

The service name to use as provider when the specified adapter needs one.

clearer

type: string

The cache clearer used to clear your PSR-6 cache.

For more information, see Psr6CacheClearer20.

prefix_seed

type: string default: null

If defined, this value is used as part of the "namespace" generated for the cache item keys. A common
practice is to use the unique name of the application (e.g. symfony.com) because that prevents naming
collisions when deploying multiple applications into the same path (on different servers) that share the
same cache backend.

It's also useful when using blue/green deployment21 strategies and more generally, when you need to
abstract out the actual deployment directory (for example, when warming caches offline).

lock

type: string

The default lock adapter. If not defined, the value is set to semaphore when available, or to flock
otherwise. Store's DSN are also allowed.

19. https://api.symfony.com/4.0/Psr/Cache/CacheItemPoolInterface.html
20. https://api.symfony.com/4.0/Symfony/Component/HttpKernel/CacheClearer/Psr6CacheClearer.html

21. http://martinfowler.com/bliki/BlueGreenDeployment.html

PDF brought to you by

generated on May 24, 2018

Chapter 1: FrameworkBundle Configuration ("framework") | 26

http://sensiolabs.com

Listing 1-20

Full Default Configuration

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

framework:
secret: ~
http_method_override: true
trusted_proxies: []
ide: ~
test: ~
default_locale: en

csrf_protection:
enabled: false

form configuration
form:

enabled: false
csrf_protection:

enabled: true
field_name: ~

esi configuration
esi:

enabled: false

fragments configuration
fragments:

enabled: false
path: /_fragment

profiler configuration
profiler:

enabled: false
collect: true
only_exceptions: false
only_master_requests: false
dsn: file:%kernel.cache_dir%/profiler

router configuration
router:

resource: ~ # Required
type: ~
http_port: 80
https_port: 443

* set to true to throw an exception when a parameter does not
match the requirements
* set to false to disable exceptions when a parameter does not
match the requirements (and return null instead)
* set to null to disable parameter checks against requirements
#
'true' is the preferred configuration in development mode, while
'false' or 'null' might be preferred in production
strict_requirements: true

session configuration
session:

storage_id: session.storage.native
handler_id: session.handler.native_file
name: ~
cookie_lifetime: ~
cookie_path: ~
cookie_domain: ~
cookie_secure: ~
cookie_httponly: ~
gc_divisor: ~
gc_probability: ~
gc_maxlifetime: ~
save_path: '%kernel.cache_dir%/sessions'

serializer configuration

PDF brought to you by

generated on May 24, 2018

Chapter 1: FrameworkBundle Configuration ("framework") | 27

http://sensiolabs.com

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

serializer:
enabled: false
cache: ~
name_converter: ~
circular_reference_handler: ~

assets configuration
assets:

base_path: ~
base_urls: []
version: ~
version_format: '%%s?%%s'
packages:

Prototype
name:

base_path: ~
base_urls: []
version: ~
version_format: '%%s?%%s'

templating configuration
templating:

hinclude_default_template: ~
form:

resources:

Default:
- FrameworkBundle:Form

cache: ~
engines: # Required

Example:
- twig

loaders: []

translator configuration
translator:

enabled: false
fallbacks: [en]
logging: "%kernel.debug%"
paths: []

validation configuration
validation:

enabled: false
cache: ~
enable_annotations: false
translation_domain: validators
mapping:

paths: []

annotation configuration
annotations:

cache: file
file_cache_dir: '%kernel.cache_dir%/annotations'
debug: '%kernel.debug%'

PHP errors handling configuration
php_errors:

log: false
throw: '%kernel.debug%'

cache configuration
cache:

app: cache.app
system: cache.system
directory: '%kernel.cache_dir%/pools'
default_doctrine_provider: ~
default_psr6_provider: ~
default_redis_provider: 'redis://localhost'

PDF brought to you by

generated on May 24, 2018

Chapter 1: FrameworkBundle Configuration ("framework") | 28

http://sensiolabs.com

140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

default_memcached_provider: 'memcached://localhost'
pools:

Prototype
name:

adapter: cache.app
public: false
default_lifetime: ~
provider: ~
clearer: ~

lock configuration
lock:

invoice: 'redis://localhost'
report: semaphore

lock: ~
lock: 'flock'
lock: ['semaphore', 'redis://localhost']

PDF brought to you by

generated on May 24, 2018

Chapter 1: FrameworkBundle Configuration ("framework") | 29

http://sensiolabs.com

Listing 2-1

Chapter 2

DoctrineBundle Configuration ("doctrine")

Full Default Configuration

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

config/packages/doctrine.yaml
doctrine:

dbal:
default_connection: default
types:

A collection of custom types
Example
some_custom_type:

class: App\DBAL\MyCustomType
commented: true

connections:
A collection of different named connections (e.g. default, conn2, etc)
default:

dbname: ~
host: localhost
port: ~
user: root
password: ~
charset of the database
charset: ~
charset and collation of the tables. Not inherited from database
default_table_options:

charset: ~
collate: ~

path: ~
memory: ~

The unix socket to use for MySQL
unix_socket: ~

True to use as persistent connection for the ibm_db2 driver
persistent: ~

The protocol to use for the ibm_db2 driver (default to TCPIP if omitted)
protocol: ~

PDF brought to you by

generated on May 24, 2018

Chapter 2: DoctrineBundle Configuration ("doctrine") | 30

http://sensiolabs.com

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

True to use dbname as service name instead of SID for Oracle
service: ~

The session mode to use for the oci8 driver
sessionMode: ~

True to use a pooled server with the oci8 driver
pooled: ~

Configuring MultipleActiveResultSets for the pdo_sqlsrv driver
MultipleActiveResultSets: ~
driver: pdo_mysql
platform_service: ~

the version of your database engine
server_version: ~

when true, queries are logged to a 'doctrine' monolog channel
logging: '%kernel.debug%'
profiling: '%kernel.debug%'
driver_class: ~
wrapper_class: ~
the DBAL keepSlave option
keep_slave: false
options:

an array of options
key: []

mapping_types:
an array of mapping types
name: []

If defined, only the tables whose names match this regular expression are managed
by the schema tool (in this example, any table name not starting with `wp_`)
#schema_filter: '/^(?!wp_)/'

slaves:

a collection of named slave connections (e.g. slave1, slave2)
slave1:

dbname: ~
host: localhost
port: ~
user: root
password: ~
charset: ~
path: ~
memory: ~

The unix socket to use for MySQL
unix_socket: ~

True to use as persistent connection for the ibm_db2 driver
persistent: ~

The protocol to use for the ibm_db2 driver (default to TCPIP if omitted)
protocol: ~

True to use dbname as service name instead of SID for Oracle
service: ~

The session mode to use for the oci8 driver
sessionMode: ~

True to use a pooled server with the oci8 driver
pooled: ~

Configuring MultipleActiveResultSets for the pdo_sqlsrv driver
MultipleActiveResultSets: ~

orm:
default_entity_manager: ~

PDF brought to you by

generated on May 24, 2018

Chapter 2: DoctrineBundle Configuration ("doctrine") | 31

http://sensiolabs.com

109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

auto_generate_proxy_classes: false
proxy_dir: '%kernel.cache_dir%/doctrine/orm/Proxies'
proxy_namespace: Proxies
search for the "ResolveTargetEntityListener" class for an article about this
resolve_target_entities: []
entity_managers:

A collection of different named entity managers (e.g. some_em, another_em)
some_em:

query_cache_driver:
type: array # Required
host: ~
port: ~
instance_class: ~
class: ~
namespace: ~

metadata_cache_driver:
type: array # Required
host: ~
port: ~
instance_class: ~
class: ~
namespace: ~

result_cache_driver:
type: array # Required
host: ~
port: ~
instance_class: ~
class: ~
namespace: ~

connection: ~
class_metadata_factory_name: Doctrine\ORM\Mapping\ClassMetadataFactory
default_repository_class: Doctrine\ORM\EntityRepository
auto_mapping: false
hydrators:

An array of hydrator names
hydrator_name: []

mappings:
An array of mappings, which may be a bundle name or something else
mapping_name:

mapping: true
type: ~
dir: ~
alias: ~
prefix: ~
is_bundle: ~

dql:
a collection of string functions
string_functions:

example
test_string: App\DQL\StringFunction

a collection of numeric functions
numeric_functions:

example
test_numeric: App\DQL\NumericFunction

a collection of datetime functions
datetime_functions:

example
test_datetime: App\DQL\DatetimeFunction

Register SQL Filters in the entity manager
filters:

An array of filters
some_filter:

class: ~ # Required
enabled: false

PDF brought to you by

generated on May 24, 2018

Chapter 2: DoctrineBundle Configuration ("doctrine") | 32

http://sensiolabs.com

Listing 2-2

Listing 2-3

Doctrine DBAL Configuration
DoctrineBundle supports all parameters that default Doctrine drivers accept, converted to the XML
or YAML naming standards that Symfony enforces. See the Doctrine DBAL documentation1 for more
information. The following block shows all possible configuration keys:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

doctrine:
dbal:

dbname: database
host: localhost
port: 1234
user: user
password: secret
driver: pdo_mysql
if the url option is specified, it will override the above config
url: mysql://db_user:db_password@127.0.0.1:3306/db_name
the DBAL driverClass option
driver_class: App\DBAL\MyDatabaseDriver
the DBAL driverOptions option
options:

foo: bar
path: '%kernel.project_dir%/var/data/data.sqlite'
memory: true
unix_socket: /tmp/mysql.sock
the DBAL wrapperClass option
wrapper_class: App\DBAL\MyConnectionWrapper
charset: UTF8
logging: '%kernel.debug%'
platform_service: App\DBAL\MyDatabasePlatformService
server_version: '5.6'
mapping_types:

enum: string
types:

custom: App\DBAL\MyCustomType

The server_version option was added in Doctrine DBAL 2.5, which is used by DoctrineBundle
1.3. The value of this option should match your database server version (use postgres -V or psql
-V command to find your PostgreSQL version and mysql -V to get your MySQL version).

If you are running a MariaDB database, you must prefix the server_version value with
mariadb- (e.g. server_version: mariadb-10.2.12).

Always wrap the server version number with quotes to parse it as a string instead of a float
number. Otherwise, the floating-point representation issues can make your version be considered
a different number (e.g. 5.6 will be rounded as
5.5999999999999996447286321199499070644378662109375).

If you don't define this option and you haven't created your database yet, you may get
PDOException errors because Doctrine will try to guess the database server version automatically
and none is available.

If you want to configure multiple connections in YAML, put them under the connections key and give
them a unique name:

1
2
3
4
5
6
7

doctrine:
dbal:

default_connection: default
connections:

default:
dbname: Symfony
user: root

1. http://docs.doctrine-project.org/projects/doctrine-dbal/en/latest/reference/configuration.html

PDF brought to you by

generated on May 24, 2018

Chapter 2: DoctrineBundle Configuration ("doctrine") | 33

http://sensiolabs.com

Listing 2-4

Listing 2-5

8
9
10
11
12
13
14
15
16

password: null
host: localhost
server_version: 5.6

customer:
dbname: customer
user: root
password: null
host: localhost
server_version: 5.7

The database_connection service always refers to the default connection, which is the first one
defined or the one configured via the default_connection parameter.

Each connection is also accessible via the doctrine.dbal.[name]_connection service where
[name] is the name of the connection.

Doctrine ORM Configuration
This following configuration example shows all the configuration defaults that the ORM resolves to:

1
2
3
4
5
6
7
8
9
10
11

doctrine:
orm:

auto_mapping: true
the standard distribution overrides this to be true in debug, false otherwise
auto_generate_proxy_classes: false
proxy_namespace: Proxies
proxy_dir: '%kernel.cache_dir%/doctrine/orm/Proxies'
default_entity_manager: default
metadata_cache_driver: array
query_cache_driver: array
result_cache_driver: array

There are lots of other configuration options that you can use to overwrite certain classes, but those are
for very advanced use-cases only.

Shortened Configuration Syntax

When you are only using one entity manager, all config options available can be placed directly under
doctrine.orm config level.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

doctrine:
orm:

...
query_cache_driver:

...
metadata_cache_driver:

...
result_cache_driver:

...
connection: ~
class_metadata_factory_name: Doctrine\ORM\Mapping\ClassMetadataFactory
default_repository_class: Doctrine\ORM\EntityRepository
auto_mapping: false
hydrators:

...
mappings:

...
dql:

...
filters:

...

PDF brought to you by

generated on May 24, 2018

Chapter 2: DoctrineBundle Configuration ("doctrine") | 34

http://sensiolabs.com

Listing 2-6

This shortened version is commonly used in other documentation sections. Keep in mind that you can't
use both syntaxes at the same time.

Caching Drivers

The built-in types of caching drivers are: array, apc, apcu, memcache, memcached, redis,
wincache, zenddata and xcache. There is a special type called service which lets you define the
ID of your own caching service.

The following example shows an overview of the caching configurations:

1
2
3
4
5
6
7
8
9
10
11
12
13
14

doctrine:
orm:

auto_mapping: true
each caching driver type defines its own config options
metadata_cache_driver: apc
result_cache_driver:

type: memcache
host: localhost
port: 11211
instance_class: Memcache

the 'service' type requires to define the 'id' option too
query_cache_driver:

type: service
id: App\ORM\MyCacheService

Mapping Configuration

Explicit definition of all the mapped entities is the only necessary configuration for the ORM and there
are several configuration options that you can control. The following configuration options exist for a
mapping:

type

One of annotation (the default value), xml, yml, php or staticphp. This specifies which type of
metadata type your mapping uses.

dir

Absolute path to the mapping or entity files (depending on the driver).

prefix

A common namespace prefix that all entities of this mapping share. This prefix should never conflict with
prefixes of other defined mappings otherwise some of your entities cannot be found by Doctrine.

alias

Doctrine offers a way to alias entity namespaces to simpler, shorter names to be used in DQL queries or
for Repository access.

is_bundle

This option is false by default and it's considered a legacy option. It was only useful in previous
Symfony versions, when it was recommended to use bundles to organize the application code.

PDF brought to you by

generated on May 24, 2018

Chapter 2: DoctrineBundle Configuration ("doctrine") | 35

http://sensiolabs.com

Listing 2-7

Listing 2-8

Custom Mapping Entities in a Bundle

Doctrine's auto_mapping feature loads annotation configuration from the Entity/ directory of each
bundle and looks for other formats (e.g. YAML, XML) in the Resources/config/doctrine
directory.

If you store metadata somewhere else in your bundle, you can define your own mappings, where you tell
Doctrine exactly where to look, along with some other configurations.

If you're using the auto_mapping configuration, you just need to overwrite the configurations you
want. In this case it's important that the key of the mapping configurations corresponds to the name of
the bundle.

For example, suppose you decide to store your XML configuration for AppBundle entities in the
@AppBundle/SomeResources/config/doctrine directory instead:

1
2
3
4
5
6
7
8
9
10

doctrine:
...
orm:

...
auto_mapping: true
mappings:

...
AppBundle:

type: xml
dir: SomeResources/config/doctrine

Mapping Entities Outside of a Bundle

For example, the following looks for entity classes in the Entity namespace in the src/Entity
directory and gives them an App alias (so you can say things like App:Post):

1
2
3
4
5
6
7
8
9
10
11
12

doctrine:
...
orm:

...
mappings:

...
SomeEntityNamespace:

type: annotation
dir: '%kernel.project_dir%/src/Entity'
is_bundle: false
prefix: App\Entity
alias: App

Detecting a Mapping Configuration Format

If the type on the bundle configuration isn't set, the DoctrineBundle will try to detect the correct
mapping configuration format for the bundle.

DoctrineBundle will look for files matching *.orm.[FORMAT] (e.g. Post.orm.yaml) in the configured
dir of your mapping (if you're mapping a bundle, then dir is relative to the bundle's directory).

The bundle looks for (in this order) XML, YAML and PHP files. Using the auto_mapping feature, every
bundle can have only one configuration format. The bundle will stop as soon as it locates one.

If it wasn't possible to determine a configuration format for a bundle, the DoctrineBundle will check if
there is an Entity folder in the bundle's root directory. If the folder exist, Doctrine will fall back to using
an annotation driver.

PDF brought to you by

generated on May 24, 2018

Chapter 2: DoctrineBundle Configuration ("doctrine") | 36

http://sensiolabs.com

Default Value of Dir

If dir is not specified, then its default value depends on which configuration driver is being used. For
drivers that rely on the PHP files (annotation, staticphp) it will be [Bundle]/Entity. For drivers that
are using configuration files (XML, YAML, ...) it will be [Bundle]/Resources/config/doctrine.

If the dir configuration is set and the is_bundle configuration is true, the DoctrineBundle will prefix
the dir configuration with the path of the bundle.

PDF brought to you by

generated on May 24, 2018

Chapter 2: DoctrineBundle Configuration ("doctrine") | 37

http://sensiolabs.com

Listing 3-1

Chapter 3

SecurityBundle Configuration ("security")

The security system is one of the most powerful parts of Symfony and can largely be controlled via its
configuration.

Full Default Configuration
The following is the full default configuration for the security system. Each part will be explained in the
next section.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

config/packages/security.yaml
security:

access_denied_url: ~ # Example: /foo/error403

strategy can be: none, migrate, invalidate
session_fixation_strategy: migrate
hide_user_not_found: true
always_authenticate_before_granting: false
erase_credentials: true
access_decision_manager:

strategy: affirmative # One of affirmative, consensus, unanimous
allow_if_all_abstain: false
allow_if_equal_granted_denied: true

encoders:
Examples:
App\Entity\User1: sha512
App\Entity\User2:

algorithm: sha512
encode_as_base64: true
iterations: 5000

PBKDF2 encoder
see the note about PBKDF2 below for details on security and speed
App\Entity\User3:

algorithm: pbkdf2
hash_algorithm: sha512
encode_as_base64: true
iterations: 1000
key_length: 40

Example options/values for what a custom encoder might look like

PDF brought to you by

generated on May 24, 2018

Chapter 3: SecurityBundle Configuration ("security") | 38

http://sensiolabs.com

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

App\Entity\User4:
id: App\Security\MyPasswordEncoder

BCrypt encoder
see the note about bcrypt below for details on specific dependencies
App\Entity\User5:

algorithm: bcrypt
cost: 13

Plaintext encoder
it does not do any encoding
App\Entity\User6:

algorithm: plaintext
ignore_case: false

Argon2i encoder
Acme\DemoBundle\Entity\User6:

algorithm: argon2i

providers: # Required
Examples:
my_in_memory_provider:

memory:
users:

foo:
password: foo
roles: ROLE_USER

bar:
password: bar
roles: [ROLE_USER, ROLE_ADMIN]

my_entity_provider:
entity:

class: App\Entity\User7
property: username
name of a non-default entity manager
manager_name: ~

my_ldap_provider:
ldap:

service: ~
base_dn: ~
search_dn: ~
search_password: ~
default_roles: 'ROLE_USER'
uid_key: 'sAMAccountName'
filter: '({uid_key}={username})'

Example custom provider
my_some_custom_provider:

id: ~

Chain some providers
my_chain_provider:

chain:
providers: [my_in_memory_provider, my_entity_provider]

firewalls: # Required
Examples:
somename:

pattern: .*
restrict the firewall to a specific host
host: admin\.example\.com
restrict the firewall to specific HTTP methods
methods: [GET, POST]
request_matcher: some.service.id
access_denied_url: /foo/error403
access_denied_handler: some.service.id
entry_point: some.service.id
provider: some_key_from_above
manages where each firewall stores session information

PDF brought to you by

generated on May 24, 2018

Chapter 3: SecurityBundle Configuration ("security") | 39

http://sensiolabs.com

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

See "Firewall Context" below for more details
context: context_key
stateless: false
x509:

provider: some_key_from_above
remote_user:

provider: some_key_from_above
http_basic:

provider: some_key_from_above
http_basic_ldap:

provider: some_key_from_above
service: ldap
dn_string: '{username}'
query_string: ~

http_digest:
provider: some_key_from_above

guard:
A key from the "providers" section of your security config, in case your user provider is

different than the firewall
provider: ~

A service id (of one of your authenticators) whose start() method should be called when an
anonymous user hits a page that requires authentication

entry_point: null

An array of service ids for all of your "authenticators"
authenticators: []

form_login:
submit the login form here
check_path: /login_check

the user is redirected here when they need to log in
login_path: /login

if true, forward the user to the login form instead of redirecting
use_forward: false

login success redirecting options (read further below)
always_use_default_target_path: false
default_target_path: /
target_path_parameter: _target_path
use_referer: false

login failure redirecting options (read further below)
failure_path: /foo
failure_forward: false
failure_path_parameter: _failure_path
failure_handler: some.service.id
success_handler: some.service.id

field names for the username and password fields
username_parameter: _username
password_parameter: _password

csrf token options
csrf_parameter: _csrf_token
csrf_token_id: authenticate
csrf_token_generator: my.csrf_token_generator.id

by default, the login form *must* be a POST, not a GET
post_only: true
remember_me: false

by default, a session must exist before submitting an authentication request
if false, then Request::hasPreviousSession is not called during authentication
require_previous_session: true

form_login_ldap:
submit the login form here
check_path: /login_check

PDF brought to you by

generated on May 24, 2018

Chapter 3: SecurityBundle Configuration ("security") | 40

http://sensiolabs.com

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

the user is redirected here when they need to log in
login_path: /login

if true, forward the user to the login form instead of redirecting
use_forward: false

login success redirecting options (read further below)
always_use_default_target_path: false
default_target_path: /
target_path_parameter: _target_path
use_referer: false

login failure redirecting options (read further below)
failure_path: /foo
failure_forward: false
failure_path_parameter: _failure_path
failure_handler: some.service.id
success_handler: some.service.id

field names for the username and password fields
username_parameter: _username
password_parameter: _password

csrf token options
csrf_parameter: _csrf_token
csrf_token_id: authenticate
csrf_token_generator: my.csrf_token_generator.id

by default, the login form *must* be a POST, not a GET
post_only: true
remember_me: false

by default, a session must exist before submitting an authentication request
if false, then Request::hasPreviousSession is not called during authentication
require_previous_session: true

service: ~
dn_string: '{username}'
query_string: ~

remember_me:
token_provider: name
secret: "%secret%"
name: NameOfTheCookie
lifetime: 3600 # in seconds
path: /foo
domain: somedomain.foo
secure: false
httponly: true
always_remember_me: false
remember_me_parameter: _remember_me

logout:
path: /logout
target: /
invalidate_session: false
delete_cookies:

a: { path: null, domain: null }
b: { path: null, domain: null }

handlers: [some.service.id, another.service.id]
success_handler: some.service.id

anonymous: ~

Default values and options for any firewall
some_firewall_listener:

pattern: ~
security: true
request_matcher: ~
access_denied_url: ~
access_denied_handler: ~
entry_point: ~
provider: ~

PDF brought to you by

generated on May 24, 2018

Chapter 3: SecurityBundle Configuration ("security") | 41

http://sensiolabs.com

246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279

stateless: false
context: ~
logout:

csrf_parameter: _csrf_token
csrf_token_generator: ~
csrf_token_id: logout
path: /logout
target: /
success_handler: ~
invalidate_session: true
delete_cookies:

Prototype
name:

path: ~
domain: ~

handlers: []
anonymous:

secret: "%secret%"
switch_user:

provider: ~
parameter: _switch_user
role: ROLE_ALLOWED_TO_SWITCH

access_control:
requires_channel: ~

use the urldecoded format
path: ~ # Example: ^/path to resource/
host: ~
ips: []
methods: []
roles: []

role_hierarchy:
ROLE_ADMIN: [ROLE_ORGANIZER, ROLE_USER]
ROLE_SUPERADMIN: [ROLE_ADMIN]

Form Login Configuration

When using the form_login authentication listener beneath a firewall, there are several common
options for configuring the "form login" experience.

For even more details, see How to Customize Redirect After Form Login.

The Login Form and Process

login_path

type: string default: /login

This is the route or path that the user will be redirected to (unless use_forward is set to true) when
they try to access a protected resource but isn't fully authenticated.

This path must be accessible by a normal, un-authenticated user, else you may create a redirect loop. For
details, see "Avoid Common Pitfalls".

check_path

type: string default: /login_check

This is the route or path that your login form must submit to. The firewall will intercept any requests
(POST requests only, by default) to this URL and process the submitted login credentials.

PDF brought to you by

generated on May 24, 2018

Chapter 3: SecurityBundle Configuration ("security") | 42

http://sensiolabs.com

Be sure that this URL is covered by your main firewall (i.e. don't create a separate firewall just for
check_path URL).

use_forward

type: boolean default: false

If you'd like the user to be forwarded to the login form instead of being redirected, set this option to
true.

username_parameter

type: string default: _username

This is the field name that you should give to the username field of your login form. When you submit
the form to check_path, the security system will look for a POST parameter with this name.

password_parameter

type: string default: _password

This is the field name that you should give to the password field of your login form. When you submit
the form to check_path, the security system will look for a POST parameter with this name.

post_only

type: boolean default: true

By default, you must submit your login form to the check_path URL as a POST request. By setting this
option to false, you can send a GET request to the check_path URL.

Redirecting after Login

always_use_default_target_path

type: boolean default: false

If true, users are always redirected to the default target path regardless of the previous URL that was
stored in the session.

default_target_path

type: string default: /

The page users are redirected to when there is no previous page stored in the session (for example, when
the users browse the login page directly).

target_path_parameter

type: string default: _target_path

When using a login form, if you include an HTML element to set the target path, this option lets you
change the name of the HTML element itself.

use_referer

type: boolean default: false

PDF brought to you by

generated on May 24, 2018

Chapter 3: SecurityBundle Configuration ("security") | 43

http://sensiolabs.com

If true, the user is redirected to the value stored in the HTTP_REFERER header when no previous URL
was stored in the session. If the referrer URL is the same as the one generated with the login_path
route, the user is redirected to the default_target_path to avoid a redirection loop.

For historical reasons, and to match the misspelling of the HTTP standard, the option is called
use_referer instead of use_referrer.

Logout Configuration

invalidate_session

type: boolean default: true

By default, when users log out from any firewall, their sessions are invalidated. This means that logging
out from one firewall automatically logs them out from all the other firewalls.

The invalidate_session option allows to redefine this behavior. Set this option to false in every
firewall and the user will only be logged out from the current firewall and not the other ones.

LDAP functionality

There are several options for connecting against an LDAP server, using the form_login_ldap and
http_basic_ldap authentication providers or the ldap user provider.

For even more details, see Authenticating against an LDAP server.

Authentication

You can authenticate to an LDAP server using the LDAP variants of the form_login and http_basic
authentication providers. Simply use form_login_ldap and http_basic_ldap, which will attempt
to bind against a LDAP server instead of using password comparison.

Both authentication providers have the same arguments as their normal counterparts, with the addition
of two configuration keys:

service

type: string default: ldap

This is the name of your configured LDAP client.

dn_string

type: string default: {username}

This is the string which will be used as the bind DN. The {username} placeholder will be replaced with
the user-provided value (their login). Depending on your LDAP server's configuration, you may need to
override this value.

query_string

type: string default: null

PDF brought to you by

generated on May 24, 2018

Chapter 3: SecurityBundle Configuration ("security") | 44

http://sensiolabs.com

Listing 3-2

Listing 3-3

This is the string which will be used to query for the DN. The {username} placeholder will be replaced
with the user-provided value (their login). Depending on your LDAP server's configuration, you will need
to override this value. This setting is only necessary if the user's DN cannot be derived statically using the
dn_string config option.

User provider

Users will still be fetched from the configured user provider. If you wish to fetch your users from a LDAP
server, you will need to use the ldap user provider, in addition to one of the two authentication providers
(form_login_ldap or http_basic_ldap).

1
2
3
4
5
6
7
8
9
10
11
12
13
14

config/packages/security.yaml
security:

...

providers:
my_ldap_users:

ldap:
service: ldap
base_dn: 'dc=symfony,dc=com'
search_dn: '%ldap.search_dn%'
search_password: '%ldap.search_password%'
default_roles: ''
uid_key: 'uid'
filter: '(&({uid_key}={username})(objectclass=person)(ou=Users))'

Using the PBKDF2 Encoder: Security and Speed

The PBKDF21 encoder provides a high level of Cryptographic security, as recommended by the National
Institute of Standards and Technology (NIST).

You can see an example of the pbkdf2 encoder in the YAML block on this page.

But using PBKDF2 also warrants a warning: using it (with a high number of iterations) slows down the
process. Thus, PBKDF2 should be used with caution and care.

A good configuration lies around at least 1000 iterations and sha512 for the hash algorithm.

Using the BCrypt Password Encoder

1
2
3
4
5
6
7
8

config/packages/security.yaml
security:

...

encoders:
Symfony\Component\Security\Core\User\User:

algorithm: bcrypt
cost: 15

The cost can be in the range of 4-31 and determines how long a password will be encoded. Each
increment of cost doubles the time it takes to encode a password.

If you don't provide the cost option, the default cost of 13 is used.

1. https://en.wikipedia.org/wiki/PBKDF2

PDF brought to you by

generated on May 24, 2018

Chapter 3: SecurityBundle Configuration ("security") | 45

http://sensiolabs.com

Listing 3-4

Listing 3-5

You can change the cost at any time — even if you already have some passwords encoded using a
different cost. New passwords will be encoded using the new cost, while the already encoded ones
will be validated using a cost that was used back when they were encoded.

A salt for each new password is generated automatically and need not be persisted. Since an encoded
password contains the salt used to encode it, persisting the encoded password alone is enough.

BCrypt encoded passwords are 60 characters long, so make sure to allocate enough space for them
to be persisted.

A simple technique to make tests much faster when using BCrypt is to set the cost to 4, which is the
minimum value allowed, in the test environment configuration.

Using the Argon2i Password Encoder

To use this encoder, you either need to use PHP version 7.2 or install the libsodium2 extension.

1
2
3
4
5
6
7

app/config/security.yml
security:

...

encoders:
Symfony\Component\Security\Core\User\User:

algorithm: argon2i

A salt for each new password is generated automatically and need not be persisted. Since an encoded
password contains the salt used to encode it, persisting the encoded password alone is enough.

Argon2i encoded passwords are 96 characters long, but due to the hashing requirements saved in
the resulting hash this may change in the future.

Firewall Context
Most applications will only need one firewall. But if your application does use multiple firewalls, you'll
notice that if you're authenticated in one firewall, you're not automatically authenticated in another.
In other words, the systems don't share a common "context": each firewall acts like a separate security
system.

However, each firewall has an optional context key (which defaults to the name of the firewall), which
is used when storing and retrieving security data to and from the session. If this key were set to the same
value across multiple firewalls, the "context" could actually be shared:

1
2

config/packages/security.yaml
security:

2. https://pecl.php.net/package/libsodium

PDF brought to you by

generated on May 24, 2018

Chapter 3: SecurityBundle Configuration ("security") | 46

http://sensiolabs.com

3
4
5
6
7
8
9
10
11

...

firewalls:
somename:

...
context: my_context

othername:
...
context: my_context

The firewall context key is stored in session, so every firewall using it must set its stateless option
to false. Otherwise, the context is ignored and you won't be able to authenticate on multiple
firewalls at the same time.

PDF brought to you by

generated on May 24, 2018

Chapter 3: SecurityBundle Configuration ("security") | 47

http://sensiolabs.com

Chapter 4

SwiftmailerBundle Configuration
("swiftmailer")

This reference document is a work in progress. It should be accurate, but all options are not yet fully
covered. For a full list of the default configuration options, see Full Default Configuration

The swiftmailer key configures Symfony's integration with Swift Mailer, which is responsible for
creating and delivering email messages.

The following section lists all options that are available to configure a mailer. It is also possible to
configure several mailers (see Using Multiple Mailers).

Configuration
• url

• transport

• username

• password

• command

• host

• port

• timeout

• source_ip

• local_domain

• encryption

• auth_mode
• spool

• type
• path

PDF brought to you by

generated on May 24, 2018

Chapter 4: SwiftmailerBundle Configuration ("swiftmailer") | 48

http://sensiolabs.com

• sender_address
• antiflood

• threshold
• sleep

• delivery_addresses

• delivery_whitelist

• disable_delivery

• logging

url

type: string

The entire SwiftMailer configuration using a DSN-like URL format.

Example: smtp://user:pass@host:port/
?timeout=60&encryption=ssl&auth_mode=login&...

transport

type: string default: smtp

The exact transport method to use to deliver emails. Valid values are:

• smtp
• gmail (see Using Gmail to Send Emails)
• mail (deprecated in SwiftMailer since version 5.4.5)
• sendmail
• null (same as setting disable_delivery to true)

username

type: string

The username when using smtp as the transport.

password

type: string

The password when using smtp as the transport.

command

type: string default: /usr/sbin/sendmail -bs

Command to be executed by sendmail transport.

host

type: string default: localhost

The host to connect to when using smtp as the transport.

PDF brought to you by

generated on May 24, 2018

Chapter 4: SwiftmailerBundle Configuration ("swiftmailer") | 49

http://sensiolabs.com

port

type: string default: 25 or 465 (depending on encryption)

The port when using smtp as the transport. This defaults to 465 if encryption is ssl and 25 otherwise.

timeout

type: integer

The timeout in seconds when using smtp as the transport.

source_ip

type: string

The source IP address when using smtp as the transport.

local_domain

type: string

New in version 2.4.0: The local_domain option was introduced in SwiftMailerBundle 2.4.0.

The domain name to use in HELO command.

encryption

type: string

The encryption mode to use when using smtp as the transport. Valid values are tls, ssl, or null
(indicating no encryption).

auth_mode

type: string

The authentication mode to use when using smtp as the transport. Valid values are plain, login,
cram-md5, or null.

spool

For details on email spooling, see How to Spool Emails.

type

type: string default: file

The method used to store spooled messages. Valid values are memory and file. A custom spool
should be possible by creating a service called swiftmailer.spool.myspool and setting this value
to myspool.

path

type: string default: %kernel.cache_dir%/swiftmailer/spool

When using the file spool, this is the path where the spooled messages will be stored.

PDF brought to you by

generated on May 24, 2018

Chapter 4: SwiftmailerBundle Configuration ("swiftmailer") | 50

http://sensiolabs.com

sender_address

type: string

If set, all messages will be delivered with this address as the "return path" address, which is where
bounced messages should go. This is handled internally by Swift Mailer's
Swift_Plugins_ImpersonatePlugin class.

antiflood

threshold

type: integer default: 99

Used with Swift_Plugins_AntiFloodPlugin. This is the number of emails to send before
restarting the transport.

sleep

type: integer default: 0

Used with Swift_Plugins_AntiFloodPlugin. This is the number of seconds to sleep for during a
transport restart.

delivery_addresses

type: array

In previous versions, this option was called delivery_address.

If set, all email messages will be sent to these addresses instead of being sent to their actual recipients.
This is often useful when developing. For example, by setting this in the config/packages/dev/
swiftmailer.yaml file, you can guarantee that all emails sent during development go to one or more
some specific accounts.

This uses Swift_Plugins_RedirectingPlugin. Original recipients are available on the X-Swift-
To, X-Swift-Cc and X-Swift-Bcc headers.

delivery_whitelist

type: array

Used in combination with delivery_address or delivery_addresses. If set, emails matching
any of these patterns will be delivered like normal, as well as being sent to delivery_address or
delivery_addresses. For details, see the How to Work with Emails during Development article.

disable_delivery

type: boolean default: false

If true, the transport will automatically be set to null and no emails will actually be delivered.

PDF brought to you by

generated on May 24, 2018

Chapter 4: SwiftmailerBundle Configuration ("swiftmailer") | 51

http://sensiolabs.com

Listing 4-1

Listing 4-2

Listing 4-3

logging

type: boolean default: %kernel.debug%

If true, Symfony's data collector will be activated for Swift Mailer and the information will be available in
the profiler.

The following options can be set via environment variables using the %env()% syntax: url,
transport, username, password, host, port, timeout, source_ip, local_domain,
encryption, auth_mode. For details, see the How to Set external Parameters in the Service
Container article.

Full Default Configuration

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

swiftmailer:
transport: smtp
username: ~
password: ~
host: localhost
port: false
encryption: ~
auth_mode: ~
spool:

type: file
path: '%kernel.cache_dir%/swiftmailer/spool'

sender_address: ~
antiflood:

threshold: 99
sleep: 0

delivery_addresses: []
disable_delivery: ~
logging: '%kernel.debug%'

Using Multiple Mailers

You can configure multiple mailers by grouping them under the mailers key (the default mailer is
identified by the default_mailer option):

1
2
3
4
5
6
7

swiftmailer:
default_mailer: second_mailer
mailers:

first_mailer:
...

second_mailer:
...

Each mailer is registered automatically as a service with these IDs:

1
2
3
4
5
6
7
8
9
10

// ...

// returns the first mailer
$container->get('swiftmailer.mailer.first_mailer');

// also returns the second mailer since it is the default mailer
$container->get('swiftmailer.mailer');

// returns the second mailer
$container->get('swiftmailer.mailer.second_mailer');

PDF brought to you by

generated on May 24, 2018

Chapter 4: SwiftmailerBundle Configuration ("swiftmailer") | 52

http://sensiolabs.com

Listing 4-4

When configuring multiple mailers, options must be placed under the appropriate mailer key of the
configuration instead of directly under the swiftmailer key.

When using autowiring only the default mailer is injected when type-hinting some argument with
the \Swift_Mailer class. If you need to inject a different mailer in some service, use any of these
alternatives based on the service binding feature:

1
2
3
4
5
6
7
8
9
10
11
12
13
14

config/services.yaml
services:

_defaults:
bind:

this injects the second mailer when type-hinting constructor arguments with \Swift_Mailer
\Swift_Mailer: '@swiftmailer.mailer.second_mailer'
this injects the second mailer when a service constructor argument is called $specialMailer
$specialMailer: '@swiftmailer.mailer.second_mailer'

App\Some\Service:
this injects the second mailer only for this argument of this service
$differentMailer: '@swiftmailer.mailer.second_mailer'

...

PDF brought to you by

generated on May 24, 2018

Chapter 4: SwiftmailerBundle Configuration ("swiftmailer") | 53

http://sensiolabs.com

Listing 5-1

Chapter 5

TwigBundle Configuration ("twig")

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

config/packages/twig.yaml
twig:

exception_controller: twig.controller.exception:showAction

form_themes:

Default:
- form_div_layout.html.twig

Bootstrap:
- bootstrap_3_layout.html.twig
- bootstrap_3_horizontal_layout.html.twig
- bootstrap_4_layout.html.twig
- bootstrap_4_horizontal_layout.html.twig

Foundation
- foundation_5_layout.html.twig

Example:
- form.html.twig

globals:

Examples:
foo: '@bar'
pi: 3.14

Example options, but the easiest use is as seen above
some_variable_name:

a service id that should be the value
id: ~
set to service or leave blank
type: ~
value: ~

autoescape: ~

See http://twig.sensiolabs.org/doc/
recipes.html#using-the-template-name-to-set-the-default-escaping-strategy

autoescape_service: ~ # Example: 'my_service'
autoescape_service_method: ~ # use in combination with autoescape_service option
base_template_class: ~ # Example: Twig_Template
cache: '%kernel.cache_dir%/twig'
charset: '%kernel.charset%'

PDF brought to you by

generated on May 24, 2018

Chapter 5: TwigBundle Configuration ("twig") | 54

http://sensiolabs.com

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

debug: '%kernel.debug%'
strict_variables: ~
auto_reload: ~
optimizations: ~
default_path: '%kernel.project_dir%/templates'
paths:

'%kernel.project_dir%/vendor/acme/foo-bar/templates': foo_bar

date:
format: d.m.Y, H:i:s
interval_format: '%%d days'
timezone: Asia/Tokyo

number_format:
decimals: 2
decimal_point: ','
thousands_separator: '.'

Configuration

auto_reload

type: boolean default: '%kernel.debug%'

If true, whenever a template is rendered, Symfony checks first if its source code has changed since it was
compiled. If it has changed, the template is compiled again automatically.

autoescape

type: boolean or string default: 'name'

If set to false, automatic escaping is disabled (you can still escape each content individually in the
templates).

Setting this option to false is dangerous and it will make your application vulnerable to XSS
exploits because most third-party bundles assume that auto-escaping is enabled and they don't
escape contents themselves.

If set to a string, the template contents are escaped using the strategy with that name. Allowed values are
html, js, css, url, html_attr and name. The default value is name. This strategy escapes contents
according to the template name extension (e.g. it uses html for *.html.twig templates and js for
*.js.html templates).

See autoescape_service and autoescape_service_method to define your own escaping strategy.

autoescape_service

type: string default: null

As of Twig 1.17, the escaping strategy applied by default to the template is determined during
compilation time based on the filename of the template. This means for example that the contents
of a *.html.twig template are escaped for HTML and the contents of *.js.twig are escaped for
JavaScript.

PDF brought to you by

generated on May 24, 2018

Chapter 5: TwigBundle Configuration ("twig") | 55

http://sensiolabs.com

This option allows to define the Symfony service which will be used to determine the default escaping
applied to the template.

autoescape_service_method

type: string default: null

If autoescape_service option is defined, then this option defines the method called to determine the
default escaping applied to the template.

base_template_class

type: string default: 'Twig_Template'

Twig templates are compiled into PHP classes before using them to render contents. This option defines
the base class from which all the template classes extend. Using a custom base template is discouraged
because it will make your application harder to maintain.

cache

type: string default: '%kernel.cache_dir%/twig'

Before using the Twig templates to render some contents, they are compiled into regular PHP code.
Compilation is a costly process, so the result is cached in the directory defined by this configuration
option.

Set this option to null to disable Twig template compilation. However, this is not recommended; not
even in the dev environment, because the auto_reload option ensures that cached templates which
have changed get compiled again.

charset

type: string default: '%kernel.charset%'

The charset used by the template files. By default it's the same as the value of the kernel.charset
container parameter, which is UTF-8 by default in Symfony applications.

date

These options define the default values used by the date filter to format date and time values. They are
useful to avoid passing the same arguments on every date filter call.

format

type: string default: F j, Y H:i

The format used by the date filter to display values when no specific format is passed as argument.

internal_format

type: string default: %d days

The format used by the date filter to display DateInterval instances when no specific format is
passed as argument.

PDF brought to you by

generated on May 24, 2018

Chapter 5: TwigBundle Configuration ("twig") | 56

http://sensiolabs.com

timezone

type: string default: (the value returned by date_default_timezone_get())

The timezone used when formatting date values with the date filter and no specific timezone is passed
as argument.

debug

type: boolean default: '%kernel.debug%'

If true, the compiled templates include a __toString() method that can be used to display their
nodes.

exception_controller

type: string default: twig.controller.exception:showAction

This is the controller that is activated after an exception is thrown anywhere in your application. The
default controller (ExceptionController1) is what's responsible for rendering specific templates
under different error conditions (see How to Customize Error Pages). Modifying this option is advanced.
If you need to customize an error page you should use the previous link. If you need to perform
some behavior on an exception, you should add a listener to the kernel.exception event (see
kernel.event_listener).

number_format

These options define the default values used by the number_format filter to format numeric values.
They are useful to avoid passing the same arguments on every number_format filter call.

decimals

type: integer default: 0

The number of decimals used to format numeric values when no specific number is passed as argument
to the number_format filter.

decimal_point

type: string default: .

The character used to separate the decimals from the integer part of numeric values when no specific
character is passed as argument to the number_format filter.

thousands_separator

type: string default: ,

The character used to separate every group of thousands in numeric values when no specific character is
passed as argument to the number_format filter.

optimizations

type: int default: -1

1. https://api.symfony.com/4.0/Symfony/Bundle/TwigBundle/Controller/ExceptionController.html

PDF brought to you by

generated on May 24, 2018

Chapter 5: TwigBundle Configuration ("twig") | 57

http://sensiolabs.com

Listing 5-2

Listing 5-3

Listing 5-4

Twig includes an extension called optimizer which is enabled by default in Symfony applications. This
extension analyzes the templates to optimize them when being compiled. For example, if your template
doesn't use the special loop variable inside a for tag, this extension removes the initialization of that
unused variable.

By default, this option is -1, which means that all optimizations are turned on. Set it to 0 to disable all the
optimizations. You can even enable or disable these optimizations selectively, as explained in the Twig
documentation about the optimizer extension2.

default_path

type: string default: '%kernel.project_dir%/templates'

The default directory where Symfony will look for Twig templates.

paths

type: array default: null

This option defines the directories where Symfony will look for Twig templates in addition to the default
locations. Symfony looks for the templates in the following order:

1. The directories defined in this option;
2. The Resources/views/ directories of the bundles used in the application;
3. The src/Resources/views/ directory of the application;
4. The directory defined in the default_path option.

The values of the paths option are defined as key: value pairs where the value part can be null.
For example:

1
2
3
4
5

config/packages/twig.yaml
twig:

...
paths:

'%kernel.project_dir%/vendor/acme/foo-bar/templates': ~

The directories defined in the paths option have more priority than the default directories defined by
Symfony. In the above example, if the template exists in the acme/foo-bar/templates/ directory
inside your application's vendor/, it will be used by Symfony.

If you provide a value for any path, Symfony will consider it the Twig namespace for that directory:

1
2
3
4
5

config/packages/twig.yaml
twig:

...
paths:

'%kernel.project_dir%/vendor/acme/foo-bar/templates': 'foo_bar'

This option is useful to not mess with the default template directories defined by Symfony. Besides, it
simplifies how you refer to those templates:

1 @foo_bar/template_name.html.twig

strict_variables

type: boolean default: false

2. http://twig.sensiolabs.org/doc/api.html#optimizer-extension

PDF brought to you by

generated on May 24, 2018

Chapter 5: TwigBundle Configuration ("twig") | 58

http://sensiolabs.com

If set to true, Symfony shows an exception whenever a Twig variable, attribute or method doesn't exist.
If set to false these errors are ignored and the non-existing values are replaced by null.

PDF brought to you by

generated on May 24, 2018

Chapter 5: TwigBundle Configuration ("twig") | 59

http://sensiolabs.com

Listing 6-1

Chapter 6

MonologBundle Configuration ("monolog")

For a full list of handler types and related configuration options, see Monolog Configuration1.

Full Default Configuration

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

config/packages/prod/monolog.yaml
monolog:

handlers:

Examples:
syslog:

type: stream
path: /var/log/symfony.log
level: ERROR
bubble: false
formatter: my_formatter

main:
type: fingers_crossed
action_level: WARNING
By default, buffer_size is unlimited (0), which could
generate huge logs.
buffer_size: 0
handler: custom

console:
type: console
verbosity_levels:

VERBOSITY_NORMAL: WARNING
VERBOSITY_VERBOSE: NOTICE
VERBOSITY_VERY_VERBOSE: INFO
VERBOSITY_DEBUG: DEBUG

custom:
type: service
id: my_handler

Default options and values for some "my_custom_handler"
Note: many of these options are specific to the "type".
For example, the 'service' type doesn't use any options
except id and channels

1. https://github.com/symfony/monolog-bundle/blob/master/DependencyInjection/Configuration.php

PDF brought to you by

generated on May 24, 2018

Chapter 6: MonologBundle Configuration ("monolog") | 60

http://sensiolabs.com

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

my_custom_handler:
type: ~ # Required
id: ~
priority: 0
level: DEBUG
bubble: true
path: '%kernel.logs_dir%/%kernel.environment%.log'
ident: false
facility: user
max_files: 0
action_level: WARNING
activation_strategy: ~
stop_buffering: true
buffer_size: 0
handler: ~
members: []
channels:

type: ~
elements: ~

from_email: ~
to_email: ~
subject: ~
mailer: ~
email_prototype:

id: ~ # Required (when the email_prototype is used)
method: ~

formatter: ~
Set to false to use seconds (instead of microseconds) in
the logs (gives a small performance boost).
use_microseconds: true

When the profiler is enabled, a handler is added to store the logs' messages in the profiler. The
profiler uses the name "debug" so it is reserved and cannot be used in the configuration.

PDF brought to you by

generated on May 24, 2018

Chapter 6: MonologBundle Configuration ("monolog") | 61

http://sensiolabs.com

Chapter 7

WebProfilerBundle Configuration
("web_profiler")

The WebProfilerBundle provides detailed technical information about each request execution and
displays it in both the web debug toolbar and the profiler.

The web debug toolbar is not available for responses of type StreamedResponse.

Configuration
• toolbar
• intercept_redirects
• excluded_ajax_paths

toolbar

type: boolean default: false

It enables and disables the toolbar entirely. Usually you set this to true in the dev and test
environments and to false in the prod environment.

intercept_redirects

type: boolean default: false

If a redirect occurs during an HTTP response, the browser follows it automatically and you won't see the
toolbar or the profiler of the original URL, only the redirected URL.

When setting this option to true, the browser stops before making any redirection and shows you the
URL which is going to redirect to, its toolbar, and its profiler. Once you've inspected the toolbar/profiler
data, you can click on the given link to perform the redirect.

PDF brought to you by

generated on May 24, 2018

Chapter 7: WebProfilerBundle Configuration ("web_profiler") | 62

http://sensiolabs.com

Listing 7-1

excluded_ajax_paths

type: string default: '^/(app(_[\\w]+)?\\.php/)?_wdt'

When the toolbar logs Ajax requests, it matches their URLs against this regular expression. If the URL
matches, the request is not displayed in the toolbar. This is useful when the application makes lots of
Ajax requests or they are heavy and you want to exclude some of them.

Full Default Configuration

1
2
3
4
5

config/packages/dev/web_profiler.yaml
web_profiler:

toolbar: false
intercept_redirects: false
excluded_ajax_paths: ^/(app(_[\\w]+)?\\.php/)?_wdt

PDF brought to you by

generated on May 24, 2018

Chapter 7: WebProfilerBundle Configuration ("web_profiler") | 63

http://sensiolabs.com

Chapter 8

DebugBundle Configuration ("debug")

The DebugBundle allows greater integration of the VarDumper component in the Symfony full-stack
framework and can be configured under the debug key in your application configuration. When using
XML, you must use the http://symfony.com/schema/dic/debug namespace.

The XSD schema is available at http://symfony.com/schema/dic/debug/
debug-1.0.xsd.

Configuration
• max_items
• min_depth
• max_string_length
• dump_destination

max_items

type: integer default: 2500

This is the maximum number of items to dump. Setting this option to -1 disables the limit.

min_depth

type: integer default: 1

Configures the minimum tree depth until which all items are guaranteed to be cloned. After this depth
is reached, only max_items items will be cloned. The default value is 1, which is consistent with older
Symfony versions.

max_string_length

type: integer default: -1

PDF brought to you by

generated on May 24, 2018

Chapter 8: DebugBundle Configuration ("debug") | 64

http://sensiolabs.com

Listing 8-1

This option configures the maximum string length before truncating the string. The default value (-1)
means that strings are never truncated.

dump_destination

type: string default: null

Configures the output destination of the dumps.

By default, the dumps are shown in the toolbar. Since this is not always possible (e.g. when working on
a JSON API), you can have an alternate output destination for dumps. Typically, you would set this to
php://stderr:

1
2
3

config/packages/debug.yaml
debug:

dump_destination: php://stderr

PDF brought to you by

generated on May 24, 2018

Chapter 8: DebugBundle Configuration ("debug") | 65

http://sensiolabs.com

Listing 9-1

Chapter 9

Configuring in the Kernel

Some configuration can be done on the kernel class itself (located by default at src/Kernel.php). You
can do this by overriding specific methods in the parent Kernel1 class.

Configuration
• Charset
• Kernel Name
• Project Directory
• Cache Directory
• Log Directory

Charset

type: string default: UTF-8

This returns the charset that is used in the application. To change it, override the getCharset()2

method and return another charset, for instance:

1
2
3
4
5
6
7
8
9
10
11

// src/Kernel.php
use Symfony\Component\HttpKernel\Kernel as BaseKernel;
// ...

class Kernel extends BaseKernel
{

public function getCharset()
{

return 'ISO-8859-1';
}

}

1. https://api.symfony.com/4.0/Symfony/Component/HttpKernel/Kernel.html

2. https://api.symfony.com/4.0/Symfony/Component/HttpKernel/Kernel.html#method_getCharset

PDF brought to you by

generated on May 24, 2018

Chapter 9: Configuring in the Kernel | 66

http://sensiolabs.com

Listing 9-2

Kernel Name

type: string default: src (i.e. the directory name holding the kernel class)

To change this setting, override the getName()3 method. Alternatively, move your kernel into a different
directory. For example, if you moved the kernel into a foo/ directory (instead of src/), the kernel name
will be foo.

The name of the kernel isn't usually directly important - it's used in the generation of cache files - and you
probably will only change it when using applications with multiple kernels.

Project Directory

type: string default: the directory of the project composer.json

This returns the root directory of your Symfony project. It's calculated as the directory where the main
composer.json file is stored.

If for some reason the composer.json file is not stored at the root of your project, you can override the
getProjectDir()4 method to return the right project directory:

1
2
3
4
5
6
7
8
9
10
11
12
13

// src/Kernel.php
use Symfony\Component\HttpKernel\Kernel as BaseKernel;
// ...

class Kernel extends BaseKernel
{

// ...

public function getProjectDir()
{

return realpath(__DIR__.'/../');
}

}

Cache Directory

type: string default: $this->rootDir/cache/$this->environment

This returns the path to the cache directory. To change it, override the getCacheDir()5 method. Read
"Override the cache Directory" for more information.

Log Directory

type: string default: $this->rootDir/log

This returns the path to the log directory. To change it, override the getLogDir()6 method. Read
"Override the logs Directory" for more information.

3. https://api.symfony.com/4.0/Symfony/Component/HttpKernel/Kernel.html#method_getName

4. https://api.symfony.com/4.0/Symfony/Component/HttpKernel/Kernel.html#method_getProjectDir

5. https://api.symfony.com/4.0/Symfony/Component/HttpKernel/Kernel.html#method_getCacheDir

6. https://api.symfony.com/4.0/Symfony/Component/HttpKernel/Kernel.html#method_getLogDir

PDF brought to you by

generated on May 24, 2018

Chapter 9: Configuring in the Kernel | 67

http://sensiolabs.com

Chapter 10

Form Types Reference

A form is composed of fields, each of which are built with the help of a field type (e.g. TextType,
ChoiceType, etc). Symfony comes standard with a large list of field types that can be used in your
application.

Supported Field Types
The following field types are natively available in Symfony:

Text Fields

• TextType
• TextareaType
• EmailType
• IntegerType
• MoneyType
• NumberType
• PasswordType
• PercentType
• SearchType
• UrlType
• RangeType
• TelType
• ColorType

Choice Fields

• ChoiceType
• EntityType
• CountryType
• LanguageType
• LocaleType
• TimezoneType

PDF brought to you by

generated on May 24, 2018

Chapter 10: Form Types Reference | 68

http://sensiolabs.com

• CurrencyType

Date and Time Fields

• DateType
• DateIntervalType
• DateTimeType
• TimeType
• BirthdayType

Other Fields

• CheckboxType
• FileType
• RadioType

Field Groups

• CollectionType
• RepeatedType

Hidden Fields

• HiddenType

Buttons

• ButtonType
• ResetType
• SubmitType

Base Fields

• FormType

PDF brought to you by

generated on May 24, 2018

Chapter 10: Form Types Reference | 69

http://sensiolabs.com

Chapter 11

TextType Field

The TextType field represents the most basic input text field.

Rendered as input text field

Inherited
options • data

• disabled
• empty_data
• error_bubbling
• error_mapping
• label
• label_attr
• label_format
• mapped
• required
• trim

Overridden
options • compound

Parent type FormType

Class TextType1

Inherited Options
These options inherit from the FormType:

data

type: mixed default: Defaults to field of the underlying structure.

1. https://api.symfony.com/4.0/Symfony/Component/Form/Extension/Core/Type/TextType.html

PDF brought to you by

generated on May 24, 2018

Chapter 11: TextType Field | 70

http://sensiolabs.com

Listing 11-1

Listing 11-2

When you create a form, each field initially displays the value of the corresponding property of the form's
domain data (e.g. if you bind an object to the form). If you want to override this initial value for the form
or an individual field, you can set it in the data option:

1
2
3
4
5
6

use Symfony\Component\Form\Extension\Core\Type\HiddenType;
// ...

$builder->add('token', HiddenType::class, array(
'data' => 'abcdef',

));

The data option always overrides the value taken from the domain data (object) when rendering.
This means the object value is also overriden when the form edits an already persisted object, causing
it to lose its persisted value when the form is submitted.

disabled

type: boolean default: false

If you don't want a user to modify the value of a field, you can set the disabled option to true. Any
submitted value will be ignored.

empty_data

type: mixed

The default value is '' (the empty string).

This option determines what value the field will return when the submitted value is empty (or missing).
It does not set an initial value if none is provided when the form is rendered in a view.

This means it helps you handling form submission with blank fields. For example, if you want the name
field to be explicitly set to John Doe when no value is selected, you can do it like this:

$builder->add('name', null, array(
'required' => false,
'empty_data' => 'John Doe',

));

This will still render an empty text box, but upon submission the John Doe value will be set. Use the
data or placeholder options to show this initial value in the rendered form.

If a form is compound, you can set empty_data as an array, object or closure. See the How to Configure
empty Data for a Form Class article for more details about these options.

If you want to set the empty_data option for your entire form class, see the How to Configure empty
Data for a Form Class article.

Form data transformers will still be applied to the empty_data value. This means that an empty
string will be cast to null. Use a custom data transformer if you explicitly want to return the empty
string.

error_bubbling

type: boolean default: false unless the form is compound

PDF brought to you by

generated on May 24, 2018

Chapter 11: TextType Field | 71

http://sensiolabs.com

Listing 11-3

Listing 11-4

Listing 11-5

If true, any errors for this field will be passed to the parent field or form. For example, if set to true on
a normal field, any errors for that field will be attached to the main form, not to the specific field.

error_mapping

type: array default: array()

This option allows you to modify the target of a validation error.

Imagine you have a custom method named matchingCityAndZipCode() that validates whether the
city and zip code match. Unfortunately, there is no "matchingCityAndZipCode" field in your form, so all
that Symfony can do is display the error on top of the form.

With customized error mapping, you can do better: map the error to the city field so that it displays above
it:

1
2
3
4
5
6
7
8

public function configureOptions(OptionsResolver $resolver)
{

$resolver->setDefaults(array(
'error_mapping' => array(

'matchingCityAndZipCode' => 'city',
),

));
}

Here are the rules for the left and the right side of the mapping:

• The left side contains property paths;
• If the violation is generated on a property or method of a class, its path is simply propertyName;
• If the violation is generated on an entry of an array or ArrayAccess object, the property path is

[indexName];
• You can construct nested property paths by concatenating them, separating properties by dots. For

example: addresses[work].matchingCityAndZipCode;
• The right side contains simply the names of fields in the form.

By default, errors for any property that is not mapped will bubble up to the parent form. You can use
the dot (.) on the left side to map errors of all unmapped properties to a particular field. For instance, to
map all these errors to the city field, use:

1
2
3
4
5

$resolver->setDefaults(array(
'error_mapping' => array(

'.' => 'city',
),

));

label

type: string default: The label is "guessed" from the field name

Sets the label that will be used when rendering the field. Setting to false will suppress the label. The label
can also be directly set inside the template:

1 {{ form_label(form.name, 'Your name') }}

label_attr

type: array default: array()

PDF brought to you by

generated on May 24, 2018

Chapter 11: TextType Field | 72

http://sensiolabs.com

Listing 11-6

Listing 11-7

Sets the HTML attributes for the <label> element, which will be used when rendering the label for the
field. It's an associative array with HTML attribute as a key. This attributes can also be directly set inside
the template:

1
2
3

{{ form_label(form.name, 'Your name', {
'label_attr': {'class': 'CUSTOM_LABEL_CLASS'}

}) }}

label_format

type: string default: null

Configures the string used as the label of the field, in case the label option was not set. This is useful
when using keyword translation messages.

If you're using keyword translation messages as labels, you often end up having multiple keyword
messages for the same label (e.g. profile_address_street, invoice_address_street). This is
because the label is build for each "path" to a field. To avoid duplicated keyword messages, you can
configure the label format to a static value, like:

1
2
3
4
5
6
7
8

// ...
$profileFormBuilder->add('address', AddressType::class, array(

'label_format' => 'form.address.%name%',
));

$invoiceFormBuilder->add('invoice', AddressType::class, array(
'label_format' => 'form.address.%name%',

));

This option is inherited by the child types. With the code above, the label of the street field of both
forms will use the form.address.street keyword message.

Two variables are available in the label format:
%id%%id%

A unique identifier for the field, consisting of the complete path to the field and the field name (e.g.
profile_address_street);

%name%%name%

The field name (e.g. street).

The default value (null) results in a "humanized" version of the field name.

The label_format option is evaluated in the form theme. Make sure to update your templates in
case you customized form theming.

mapped

type: boolean default: true

If you wish the field to be ignored when reading or writing to the object, you can set the mapped option
to false.

required

type: boolean default: true

PDF brought to you by

generated on May 24, 2018

Chapter 11: TextType Field | 73

http://sensiolabs.com

If true, an HTML5 required attribute2 will be rendered. The corresponding label will also render with a
required class.

This is superficial and independent from validation. At best, if you let Symfony guess your field type, then
the value of this option will be guessed from your validation information.

The required option also affects how empty data for each field is handled. For more details, see the
empty_data option.

trim

type: boolean default: true

If true, the whitespace of the submitted string value will be stripped via the trim3 function when the data
is bound. This guarantees that if a value is submitted with extra whitespace, it will be removed before the
value is merged back onto the underlying object.

Overridden Options

compound

type: boolean default: false

This option specifies whether the type contains child types or not. This option is managed internally for
built-in types, so there is no need to configure it explicitly.

2. http://diveintohtml5.info/forms.html

3. https://secure.php.net/manual/en/function.trim.php

PDF brought to you by

generated on May 24, 2018

Chapter 11: TextType Field | 74

http://sensiolabs.com

Chapter 12

TextareaType Field

Renders a textarea HTML element.

Rendered as textarea tag

Inherited
options • attr

• data
• disabled
• empty_data
• error_bubbling
• error_mapping
• label
• label_attr
• label_format
• mapped
• required
• trim

Parent type TextType

Class TextareaType1

If you prefer to use an advanced WYSIWYG editor instead of a plain textarea, consider using the
IvoryCKEditorBundle community bundle. Read its documentation2 to learn how to integrate it in
your Symfony application.

Inherited Options
These options inherit from the FormType:

1. https://api.symfony.com/4.0/Symfony/Component/Form/Extension/Core/Type/TextareaType.html

2. https://symfony.com/doc/current/bundles/IvoryCKEditorBundle/index.html

PDF brought to you by

generated on May 24, 2018

Chapter 12: TextareaType Field | 75

http://sensiolabs.com

Listing 12-1

Listing 12-2

Listing 12-3

attr

type: array default: array()

If you want to add extra attributes to an HTML field representation you can use the attr option. It's an
associative array with HTML attributes as keys. This can be useful when you need to set a custom class
for some widget:

$builder->add('body', TextareaType::class, array(
'attr' => array('class' => 'tinymce'),

));

data

type: mixed default: Defaults to field of the underlying structure.

When you create a form, each field initially displays the value of the corresponding property of the form's
domain data (e.g. if you bind an object to the form). If you want to override this initial value for the form
or an individual field, you can set it in the data option:

1
2
3
4
5
6

use Symfony\Component\Form\Extension\Core\Type\HiddenType;
// ...

$builder->add('token', HiddenType::class, array(
'data' => 'abcdef',

));

The data option always overrides the value taken from the domain data (object) when rendering.
This means the object value is also overriden when the form edits an already persisted object, causing
it to lose its persisted value when the form is submitted.

disabled

type: boolean default: false

If you don't want a user to modify the value of a field, you can set the disabled option to true. Any
submitted value will be ignored.

empty_data

type: mixed

The default value is '' (the empty string).

This option determines what value the field will return when the submitted value is empty (or missing).
It does not set an initial value if none is provided when the form is rendered in a view.

This means it helps you handling form submission with blank fields. For example, if you want the name
field to be explicitly set to John Doe when no value is selected, you can do it like this:

$builder->add('name', null, array(
'required' => false,
'empty_data' => 'John Doe',

));

This will still render an empty text box, but upon submission the John Doe value will be set. Use the
data or placeholder options to show this initial value in the rendered form.

If a form is compound, you can set empty_data as an array, object or closure. See the How to Configure
empty Data for a Form Class article for more details about these options.

PDF brought to you by

generated on May 24, 2018

Chapter 12: TextareaType Field | 76

http://sensiolabs.com

Listing 12-4

Listing 12-5

If you want to set the empty_data option for your entire form class, see the How to Configure empty
Data for a Form Class article.

Form data transformers will still be applied to the empty_data value. This means that an empty
string will be cast to null. Use a custom data transformer if you explicitly want to return the empty
string.

error_bubbling

type: boolean default: false unless the form is compound

If true, any errors for this field will be passed to the parent field or form. For example, if set to true on
a normal field, any errors for that field will be attached to the main form, not to the specific field.

error_mapping

type: array default: array()

This option allows you to modify the target of a validation error.

Imagine you have a custom method named matchingCityAndZipCode() that validates whether the
city and zip code match. Unfortunately, there is no "matchingCityAndZipCode" field in your form, so all
that Symfony can do is display the error on top of the form.

With customized error mapping, you can do better: map the error to the city field so that it displays above
it:

1
2
3
4
5
6
7
8

public function configureOptions(OptionsResolver $resolver)
{

$resolver->setDefaults(array(
'error_mapping' => array(

'matchingCityAndZipCode' => 'city',
),

));
}

Here are the rules for the left and the right side of the mapping:

• The left side contains property paths;
• If the violation is generated on a property or method of a class, its path is simply propertyName;
• If the violation is generated on an entry of an array or ArrayAccess object, the property path is

[indexName];
• You can construct nested property paths by concatenating them, separating properties by dots. For

example: addresses[work].matchingCityAndZipCode;
• The right side contains simply the names of fields in the form.

By default, errors for any property that is not mapped will bubble up to the parent form. You can use
the dot (.) on the left side to map errors of all unmapped properties to a particular field. For instance, to
map all these errors to the city field, use:

1
2
3
4
5

$resolver->setDefaults(array(
'error_mapping' => array(

'.' => 'city',
),

));

PDF brought to you by

generated on May 24, 2018

Chapter 12: TextareaType Field | 77

http://sensiolabs.com

Listing 12-6

Listing 12-7

Listing 12-8

label

type: string default: The label is "guessed" from the field name

Sets the label that will be used when rendering the field. Setting to false will suppress the label. The label
can also be directly set inside the template:

1 {{ form_label(form.name, 'Your name') }}

label_attr

type: array default: array()

Sets the HTML attributes for the <label> element, which will be used when rendering the label for the
field. It's an associative array with HTML attribute as a key. This attributes can also be directly set inside
the template:

1
2
3

{{ form_label(form.name, 'Your name', {
'label_attr': {'class': 'CUSTOM_LABEL_CLASS'}

}) }}

label_format

type: string default: null

Configures the string used as the label of the field, in case the label option was not set. This is useful
when using keyword translation messages.

If you're using keyword translation messages as labels, you often end up having multiple keyword
messages for the same label (e.g. profile_address_street, invoice_address_street). This is
because the label is build for each "path" to a field. To avoid duplicated keyword messages, you can
configure the label format to a static value, like:

1
2
3
4
5
6
7
8

// ...
$profileFormBuilder->add('address', AddressType::class, array(

'label_format' => 'form.address.%name%',
));

$invoiceFormBuilder->add('invoice', AddressType::class, array(
'label_format' => 'form.address.%name%',

));

This option is inherited by the child types. With the code above, the label of the street field of both
forms will use the form.address.street keyword message.

Two variables are available in the label format:
%id%%id%

A unique identifier for the field, consisting of the complete path to the field and the field name (e.g.
profile_address_street);

%name%%name%

The field name (e.g. street).

The default value (null) results in a "humanized" version of the field name.

The label_format option is evaluated in the form theme. Make sure to update your templates in
case you customized form theming.

PDF brought to you by

generated on May 24, 2018

Chapter 12: TextareaType Field | 78

http://sensiolabs.com

mapped

type: boolean default: true

If you wish the field to be ignored when reading or writing to the object, you can set the mapped option
to false.

required

type: boolean default: true

If true, an HTML5 required attribute3 will be rendered. The corresponding label will also render with a
required class.

This is superficial and independent from validation. At best, if you let Symfony guess your field type, then
the value of this option will be guessed from your validation information.

The required option also affects how empty data for each field is handled. For more details, see the
empty_data option.

trim

type: boolean default: true

If true, the whitespace of the submitted string value will be stripped via the trim4 function when the data
is bound. This guarantees that if a value is submitted with extra whitespace, it will be removed before the
value is merged back onto the underlying object.

3. http://diveintohtml5.info/forms.html

4. https://secure.php.net/manual/en/function.trim.php

PDF brought to you by

generated on May 24, 2018

Chapter 12: TextareaType Field | 79

http://sensiolabs.com

Chapter 13

EmailType Field

The EmailType field is a text field that is rendered using the HTML5 <input type="email" />
tag.

Rendered as input email field (a text box)

Inherited
options • data

• disabled
• empty_data
• error_bubbling
• error_mapping
• label
• label_attr
• label_format
• mapped
• required
• trim

Parent type TextType

Class EmailType1

Inherited Options
These options inherit from the FormType:

data

type: mixed default: Defaults to field of the underlying structure.

1. https://api.symfony.com/4.0/Symfony/Component/Form/Extension/Core/Type/EmailType.html

PDF brought to you by

generated on May 24, 2018

Chapter 13: EmailType Field | 80

http://sensiolabs.com

Listing 13-1

Listing 13-2

When you create a form, each field initially displays the value of the corresponding property of the form's
domain data (e.g. if you bind an object to the form). If you want to override this initial value for the form
or an individual field, you can set it in the data option:

1
2
3
4
5
6

use Symfony\Component\Form\Extension\Core\Type\HiddenType;
// ...

$builder->add('token', HiddenType::class, array(
'data' => 'abcdef',

));

The data option always overrides the value taken from the domain data (object) when rendering.
This means the object value is also overriden when the form edits an already persisted object, causing
it to lose its persisted value when the form is submitted.

disabled

type: boolean default: false

If you don't want a user to modify the value of a field, you can set the disabled option to true. Any
submitted value will be ignored.

empty_data

type: mixed

The default value is '' (the empty string).

This option determines what value the field will return when the submitted value is empty (or missing).
It does not set an initial value if none is provided when the form is rendered in a view.

This means it helps you handling form submission with blank fields. For example, if you want the name
field to be explicitly set to John Doe when no value is selected, you can do it like this:

$builder->add('name', null, array(
'required' => false,
'empty_data' => 'John Doe',

));

This will still render an empty text box, but upon submission the John Doe value will be set. Use the
data or placeholder options to show this initial value in the rendered form.

If a form is compound, you can set empty_data as an array, object or closure. See the How to Configure
empty Data for a Form Class article for more details about these options.

If you want to set the empty_data option for your entire form class, see the How to Configure empty
Data for a Form Class article.

Form data transformers will still be applied to the empty_data value. This means that an empty
string will be cast to null. Use a custom data transformer if you explicitly want to return the empty
string.

error_bubbling

type: boolean default: false unless the form is compound

PDF brought to you by

generated on May 24, 2018

Chapter 13: EmailType Field | 81

http://sensiolabs.com

Listing 13-3

Listing 13-4

Listing 13-5

If true, any errors for this field will be passed to the parent field or form. For example, if set to true on
a normal field, any errors for that field will be attached to the main form, not to the specific field.

error_mapping

type: array default: array()

This option allows you to modify the target of a validation error.

Imagine you have a custom method named matchingCityAndZipCode() that validates whether the
city and zip code match. Unfortunately, there is no "matchingCityAndZipCode" field in your form, so all
that Symfony can do is display the error on top of the form.

With customized error mapping, you can do better: map the error to the city field so that it displays above
it:

1
2
3
4
5
6
7
8

public function configureOptions(OptionsResolver $resolver)
{

$resolver->setDefaults(array(
'error_mapping' => array(

'matchingCityAndZipCode' => 'city',
),

));
}

Here are the rules for the left and the right side of the mapping:

• The left side contains property paths;
• If the violation is generated on a property or method of a class, its path is simply propertyName;
• If the violation is generated on an entry of an array or ArrayAccess object, the property path is

[indexName];
• You can construct nested property paths by concatenating them, separating properties by dots. For

example: addresses[work].matchingCityAndZipCode;
• The right side contains simply the names of fields in the form.

By default, errors for any property that is not mapped will bubble up to the parent form. You can use
the dot (.) on the left side to map errors of all unmapped properties to a particular field. For instance, to
map all these errors to the city field, use:

1
2
3
4
5

$resolver->setDefaults(array(
'error_mapping' => array(

'.' => 'city',
),

));

label

type: string default: The label is "guessed" from the field name

Sets the label that will be used when rendering the field. Setting to false will suppress the label. The label
can also be directly set inside the template:

1 {{ form_label(form.name, 'Your name') }}

label_attr

type: array default: array()

PDF brought to you by

generated on May 24, 2018

Chapter 13: EmailType Field | 82

http://sensiolabs.com

Listing 13-6

Listing 13-7

Sets the HTML attributes for the <label> element, which will be used when rendering the label for the
field. It's an associative array with HTML attribute as a key. This attributes can also be directly set inside
the template:

1
2
3

{{ form_label(form.name, 'Your name', {
'label_attr': {'class': 'CUSTOM_LABEL_CLASS'}

}) }}

label_format

type: string default: null

Configures the string used as the label of the field, in case the label option was not set. This is useful
when using keyword translation messages.

If you're using keyword translation messages as labels, you often end up having multiple keyword
messages for the same label (e.g. profile_address_street, invoice_address_street). This is
because the label is build for each "path" to a field. To avoid duplicated keyword messages, you can
configure the label format to a static value, like:

1
2
3
4
5
6
7
8

// ...
$profileFormBuilder->add('address', AddressType::class, array(

'label_format' => 'form.address.%name%',
));

$invoiceFormBuilder->add('invoice', AddressType::class, array(
'label_format' => 'form.address.%name%',

));

This option is inherited by the child types. With the code above, the label of the street field of both
forms will use the form.address.street keyword message.

Two variables are available in the label format:
%id%%id%

A unique identifier for the field, consisting of the complete path to the field and the field name (e.g.
profile_address_street);

%name%%name%

The field name (e.g. street).

The default value (null) results in a "humanized" version of the field name.

The label_format option is evaluated in the form theme. Make sure to update your templates in
case you customized form theming.

mapped

type: boolean default: true

If you wish the field to be ignored when reading or writing to the object, you can set the mapped option
to false.

required

type: boolean default: true

PDF brought to you by

generated on May 24, 2018

Chapter 13: EmailType Field | 83

http://sensiolabs.com

If true, an HTML5 required attribute2 will be rendered. The corresponding label will also render with a
required class.

This is superficial and independent from validation. At best, if you let Symfony guess your field type, then
the value of this option will be guessed from your validation information.

The required option also affects how empty data for each field is handled. For more details, see the
empty_data option.

trim

type: boolean default: true

If true, the whitespace of the submitted string value will be stripped via the trim3 function when the data
is bound. This guarantees that if a value is submitted with extra whitespace, it will be removed before the
value is merged back onto the underlying object.

2. http://diveintohtml5.info/forms.html

3. https://secure.php.net/manual/en/function.trim.php

PDF brought to you by

generated on May 24, 2018

Chapter 13: EmailType Field | 84

http://sensiolabs.com

Chapter 14

IntegerType Field

Renders an input "number" field. Basically, this is a text field that's good at handling data that's in an
integer form. The input number field looks like a text box, except that - if the user's browser supports
HTML5 - it will have some extra front-end functionality.

This field has different options on how to handle input values that aren't integers. By default, all non-
integer values (e.g. 6.78) will round down (e.g. 6).

Rendered as input number field

Options
• grouping
• rounding_mode

Overridden
options • compound

• scale

Inherited
options • data

• disabled
• empty_data
• error_bubbling
• error_mapping
• invalid_message
• invalid_message_parameters
• label
• label_attr
• label_format
• mapped
• required

Parent type FormType

Class IntegerType1

1. https://api.symfony.com/4.0/Symfony/Component/Form/Extension/Core/Type/IntegerType.html

PDF brought to you by

generated on May 24, 2018

Chapter 14: IntegerType Field | 85

http://sensiolabs.com

Field Options

grouping

type: integer default: false

This value is used internally as the NumberFormatter::GROUPING_USED value when using PHP's
NumberFormatter class. Its documentation is non-existent, but it appears that if you set this to true,
numbers will be grouped with a comma or period (depending on your locale): 12345.123 would display
as 12,345.123.

rounding_mode

type: integer default: IntegerToLocalizedStringTransformer::ROUND_DOWN

By default, if the user enters a non-integer number, it will be rounded down. There are several other
rounding methods and each is a constant on the IntegerToLocalizedStringTransformer2:

• IntegerToLocalizedStringTransformer::ROUND_DOWN Round towards zero.
• IntegerToLocalizedStringTransformer::ROUND_FLOOR Round towards negative infinity.
• IntegerToLocalizedStringTransformer::ROUND_UP Round away from zero.
• IntegerToLocalizedStringTransformer::ROUND_CEILING Round towards positive infinity.
• IntegerToLocalizedStringTransformer::ROUND_HALF_DOWN Round towards the "nearest neighbor". If both

neighbors are equidistant, round down.
• IntegerToLocalizedStringTransformer::ROUND_HALF_EVEN Round towards the "nearest neighbor". If both

neighbors are equidistant, round towards the even neighbor.
• IntegerToLocalizedStringTransformer::ROUND_HALF_UP Round towards the "nearest neighbor". If both

neighbors are equidistant, round up.

Overridden Options

compound

type: boolean default: false

This option specifies whether the type contains child types or not. This option is managed internally for
built-in types, so there is no need to configure it explicitly.

scale

type: integer default: 0

This specifies how many decimals will be allowed until the field rounds the submitted value (via
rounding_mode). This option inherits from number type and is overriden to 0 for IntegerType.

Inherited Options
These options inherit from the FormType:

2. https://api.symfony.com/4.0/Symfony/Component/Form/Extension/Core/DataTransformer/IntegerToLocalizedStringTransformer.html

PDF brought to you by

generated on May 24, 2018

Chapter 14: IntegerType Field | 86

http://sensiolabs.com

Listing 14-1

Listing 14-2

data

type: mixed default: Defaults to field of the underlying structure.

When you create a form, each field initially displays the value of the corresponding property of the form's
domain data (e.g. if you bind an object to the form). If you want to override this initial value for the form
or an individual field, you can set it in the data option:

1
2
3
4
5
6

use Symfony\Component\Form\Extension\Core\Type\HiddenType;
// ...

$builder->add('token', HiddenType::class, array(
'data' => 'abcdef',

));

The data option always overrides the value taken from the domain data (object) when rendering.
This means the object value is also overriden when the form edits an already persisted object, causing
it to lose its persisted value when the form is submitted.

disabled

type: boolean default: false

If you don't want a user to modify the value of a field, you can set the disabled option to true. Any
submitted value will be ignored.

empty_data

type: mixed

The default value is '' (the empty string).

This option determines what value the field will return when the submitted value is empty (or missing).
It does not set an initial value if none is provided when the form is rendered in a view.

This means it helps you handling form submission with blank fields. For example, if you want the name
field to be explicitly set to John Doe when no value is selected, you can do it like this:

$builder->add('name', null, array(
'required' => false,
'empty_data' => 'John Doe',

));

This will still render an empty text box, but upon submission the John Doe value will be set. Use the
data or placeholder options to show this initial value in the rendered form.

If a form is compound, you can set empty_data as an array, object or closure. See the How to Configure
empty Data for a Form Class article for more details about these options.

If you want to set the empty_data option for your entire form class, see the How to Configure empty
Data for a Form Class article.

Form data transformers will still be applied to the empty_data value. This means that an empty
string will be cast to null. Use a custom data transformer if you explicitly want to return the empty
string.

PDF brought to you by

generated on May 24, 2018

Chapter 14: IntegerType Field | 87

http://sensiolabs.com

Listing 14-3

Listing 14-4

error_bubbling

type: boolean default: false unless the form is compound

If true, any errors for this field will be passed to the parent field or form. For example, if set to true on
a normal field, any errors for that field will be attached to the main form, not to the specific field.

error_mapping

type: array default: array()

This option allows you to modify the target of a validation error.

Imagine you have a custom method named matchingCityAndZipCode() that validates whether the
city and zip code match. Unfortunately, there is no "matchingCityAndZipCode" field in your form, so all
that Symfony can do is display the error on top of the form.

With customized error mapping, you can do better: map the error to the city field so that it displays above
it:

1
2
3
4
5
6
7
8

public function configureOptions(OptionsResolver $resolver)
{

$resolver->setDefaults(array(
'error_mapping' => array(

'matchingCityAndZipCode' => 'city',
),

));
}

Here are the rules for the left and the right side of the mapping:

• The left side contains property paths;
• If the violation is generated on a property or method of a class, its path is simply propertyName;
• If the violation is generated on an entry of an array or ArrayAccess object, the property path is

[indexName];
• You can construct nested property paths by concatenating them, separating properties by dots. For

example: addresses[work].matchingCityAndZipCode;
• The right side contains simply the names of fields in the form.

By default, errors for any property that is not mapped will bubble up to the parent form. You can use
the dot (.) on the left side to map errors of all unmapped properties to a particular field. For instance, to
map all these errors to the city field, use:

1
2
3
4
5

$resolver->setDefaults(array(
'error_mapping' => array(

'.' => 'city',
),

));

invalid_message

type: string default: This value is not valid

This is the validation error message that's used if the data entered into this field doesn't make sense (i.e.
fails validation).

This might happen, for example, if the user enters a nonsense string into a TimeType field that cannot be
converted into a real time or if the user enters a string (e.g. apple) into a number field.

Normal (business logic) validation (such as when setting a minimum length for a field) should be set
using validation messages with your validation rules (reference).

PDF brought to you by

generated on May 24, 2018

Chapter 14: IntegerType Field | 88

http://sensiolabs.com

Listing 14-5

Listing 14-6

Listing 14-7

Listing 14-8

invalid_message_parameters

type: array default: array()

When setting the invalid_message option, you may need to include some variables in the string. This
can be done by adding placeholders to that option and including the variables in this option:

1
2
3
4
5

$builder->add('some_field', SomeFormType::class, array(
// ...
'invalid_message' => 'You entered an invalid value, it should include %num% letters',
'invalid_message_parameters' => array('%num%' => 6),

));

label

type: string default: The label is "guessed" from the field name

Sets the label that will be used when rendering the field. Setting to false will suppress the label. The label
can also be directly set inside the template:

1 {{ form_label(form.name, 'Your name') }}

label_attr

type: array default: array()

Sets the HTML attributes for the <label> element, which will be used when rendering the label for the
field. It's an associative array with HTML attribute as a key. This attributes can also be directly set inside
the template:

1
2
3

{{ form_label(form.name, 'Your name', {
'label_attr': {'class': 'CUSTOM_LABEL_CLASS'}

}) }}

label_format

type: string default: null

Configures the string used as the label of the field, in case the label option was not set. This is useful
when using keyword translation messages.

If you're using keyword translation messages as labels, you often end up having multiple keyword
messages for the same label (e.g. profile_address_street, invoice_address_street). This is
because the label is build for each "path" to a field. To avoid duplicated keyword messages, you can
configure the label format to a static value, like:

1
2
3
4
5
6
7
8

// ...
$profileFormBuilder->add('address', AddressType::class, array(

'label_format' => 'form.address.%name%',
));

$invoiceFormBuilder->add('invoice', AddressType::class, array(
'label_format' => 'form.address.%name%',

));

This option is inherited by the child types. With the code above, the label of the street field of both
forms will use the form.address.street keyword message.

Two variables are available in the label format:

PDF brought to you by

generated on May 24, 2018

Chapter 14: IntegerType Field | 89

http://sensiolabs.com

%id%%id%

A unique identifier for the field, consisting of the complete path to the field and the field name (e.g.
profile_address_street);

%name%%name%

The field name (e.g. street).

The default value (null) results in a "humanized" version of the field name.

The label_format option is evaluated in the form theme. Make sure to update your templates in
case you customized form theming.

mapped

type: boolean default: true

If you wish the field to be ignored when reading or writing to the object, you can set the mapped option
to false.

required

type: boolean default: true

If true, an HTML5 required attribute3 will be rendered. The corresponding label will also render with a
required class.

This is superficial and independent from validation. At best, if you let Symfony guess your field type, then
the value of this option will be guessed from your validation information.

The required option also affects how empty data for each field is handled. For more details, see the
empty_data option.

3. http://diveintohtml5.info/forms.html

PDF brought to you by

generated on May 24, 2018

Chapter 14: IntegerType Field | 90

http://sensiolabs.com

Chapter 15

MoneyType Field

Renders an input text field and specializes in handling submitted "money" data.

This field type allows you to specify a currency, whose symbol is rendered next to the text field. There
are also several other options for customizing how the input and output of the data is handled.

Rendered as input text field

Options
• currency
• divisor
• grouping
• scale

Overridden
options • compound

Inherited
options • data

• disabled
• empty_data
• error_bubbling
• error_mapping
• invalid_message
• invalid_message_parameters
• label
• label_attr
• label_format
• mapped
• required

Parent type FormType

Class MoneyType1

1. https://api.symfony.com/4.0/Symfony/Component/Form/Extension/Core/Type/MoneyType.html

PDF brought to you by

generated on May 24, 2018

Chapter 15: MoneyType Field | 91

http://sensiolabs.com

Listing 15-1

Field Options

currency

type: string default: EUR

Specifies the currency that the money is being specified in. This determines the currency symbol that
should be shown by the text box. Depending on the currency - the currency symbol may be shown before
or after the input text field.

This can be any 3 letter ISO 4217 code2. You can also set this to false to hide the currency symbol.

divisor

type: integer default: 1

If, for some reason, you need to divide your starting value by a number before rendering it to the user,
you can use the divisor option. For example:

1
2
3
4
5
6

use Symfony\Component\Form\Extension\Core\Type\MoneyType;
// ...

$builder->add('price', MoneyType::class, array(
'divisor' => 100,

));

In this case, if the price field is set to 9900, then the value 99 will actually be rendered to the user.
When the user submits the value 99, it will be multiplied by 100 and 9900 will ultimately be set back on
your object.

grouping

type: integer default: false

This value is used internally as the NumberFormatter::GROUPING_USED value when using PHP's
NumberFormatter class. Its documentation is non-existent, but it appears that if you set this to true,
numbers will be grouped with a comma or period (depending on your locale): 12345.123 would display
as 12,345.123.

scale

type: integer default: 2

If, for some reason, you need some scale other than 2 decimal places, you can modify this value. You
probably won't need to do this unless, for example, you want to round to the nearest dollar (set the scale
to 0).

Overridden Options

compound

type: boolean default: false

2. https://en.wikipedia.org/wiki/ISO_4217

PDF brought to you by

generated on May 24, 2018

Chapter 15: MoneyType Field | 92

http://sensiolabs.com

Listing 15-2

Listing 15-3

This option specifies whether the type contains child types or not. This option is managed internally for
built-in types, so there is no need to configure it explicitly.

Inherited Options
These options inherit from the FormType:

data

type: mixed default: Defaults to field of the underlying structure.

When you create a form, each field initially displays the value of the corresponding property of the form's
domain data (e.g. if you bind an object to the form). If you want to override this initial value for the form
or an individual field, you can set it in the data option:

1
2
3
4
5
6

use Symfony\Component\Form\Extension\Core\Type\HiddenType;
// ...

$builder->add('token', HiddenType::class, array(
'data' => 'abcdef',

));

The data option always overrides the value taken from the domain data (object) when rendering.
This means the object value is also overriden when the form edits an already persisted object, causing
it to lose its persisted value when the form is submitted.

disabled

type: boolean default: false

If you don't want a user to modify the value of a field, you can set the disabled option to true. Any
submitted value will be ignored.

empty_data

type: mixed

The default value is '' (the empty string).

This option determines what value the field will return when the submitted value is empty (or missing).
It does not set an initial value if none is provided when the form is rendered in a view.

This means it helps you handling form submission with blank fields. For example, if you want the name
field to be explicitly set to John Doe when no value is selected, you can do it like this:

$builder->add('name', null, array(
'required' => false,
'empty_data' => 'John Doe',

));

This will still render an empty text box, but upon submission the John Doe value will be set. Use the
data or placeholder options to show this initial value in the rendered form.

If a form is compound, you can set empty_data as an array, object or closure. See the How to Configure
empty Data for a Form Class article for more details about these options.

PDF brought to you by

generated on May 24, 2018

Chapter 15: MoneyType Field | 93

http://sensiolabs.com

Listing 15-4

Listing 15-5

If you want to set the empty_data option for your entire form class, see the How to Configure empty
Data for a Form Class article.

Form data transformers will still be applied to the empty_data value. This means that an empty
string will be cast to null. Use a custom data transformer if you explicitly want to return the empty
string.

error_bubbling

type: boolean default: false unless the form is compound

If true, any errors for this field will be passed to the parent field or form. For example, if set to true on
a normal field, any errors for that field will be attached to the main form, not to the specific field.

error_mapping

type: array default: array()

This option allows you to modify the target of a validation error.

Imagine you have a custom method named matchingCityAndZipCode() that validates whether the
city and zip code match. Unfortunately, there is no "matchingCityAndZipCode" field in your form, so all
that Symfony can do is display the error on top of the form.

With customized error mapping, you can do better: map the error to the city field so that it displays above
it:

1
2
3
4
5
6
7
8

public function configureOptions(OptionsResolver $resolver)
{

$resolver->setDefaults(array(
'error_mapping' => array(

'matchingCityAndZipCode' => 'city',
),

));
}

Here are the rules for the left and the right side of the mapping:

• The left side contains property paths;
• If the violation is generated on a property or method of a class, its path is simply propertyName;
• If the violation is generated on an entry of an array or ArrayAccess object, the property path is

[indexName];
• You can construct nested property paths by concatenating them, separating properties by dots. For

example: addresses[work].matchingCityAndZipCode;
• The right side contains simply the names of fields in the form.

By default, errors for any property that is not mapped will bubble up to the parent form. You can use
the dot (.) on the left side to map errors of all unmapped properties to a particular field. For instance, to
map all these errors to the city field, use:

1
2
3
4
5

$resolver->setDefaults(array(
'error_mapping' => array(

'.' => 'city',
),

));

PDF brought to you by

generated on May 24, 2018

Chapter 15: MoneyType Field | 94

http://sensiolabs.com

Listing 15-6

Listing 15-7

Listing 15-8

invalid_message

type: string default: This value is not valid

This is the validation error message that's used if the data entered into this field doesn't make sense (i.e.
fails validation).

This might happen, for example, if the user enters a nonsense string into a TimeType field that cannot be
converted into a real time or if the user enters a string (e.g. apple) into a number field.

Normal (business logic) validation (such as when setting a minimum length for a field) should be set
using validation messages with your validation rules (reference).

invalid_message_parameters

type: array default: array()

When setting the invalid_message option, you may need to include some variables in the string. This
can be done by adding placeholders to that option and including the variables in this option:

1
2
3
4
5

$builder->add('some_field', SomeFormType::class, array(
// ...
'invalid_message' => 'You entered an invalid value, it should include %num% letters',
'invalid_message_parameters' => array('%num%' => 6),

));

label

type: string default: The label is "guessed" from the field name

Sets the label that will be used when rendering the field. Setting to false will suppress the label. The label
can also be directly set inside the template:

1 {{ form_label(form.name, 'Your name') }}

label_attr

type: array default: array()

Sets the HTML attributes for the <label> element, which will be used when rendering the label for the
field. It's an associative array with HTML attribute as a key. This attributes can also be directly set inside
the template:

1
2
3

{{ form_label(form.name, 'Your name', {
'label_attr': {'class': 'CUSTOM_LABEL_CLASS'}

}) }}

label_format

type: string default: null

Configures the string used as the label of the field, in case the label option was not set. This is useful
when using keyword translation messages.

If you're using keyword translation messages as labels, you often end up having multiple keyword
messages for the same label (e.g. profile_address_street, invoice_address_street). This is
because the label is build for each "path" to a field. To avoid duplicated keyword messages, you can
configure the label format to a static value, like:

PDF brought to you by

generated on May 24, 2018

Chapter 15: MoneyType Field | 95

http://sensiolabs.com

Listing 15-9 1
2
3
4
5
6
7
8

// ...
$profileFormBuilder->add('address', AddressType::class, array(

'label_format' => 'form.address.%name%',
));

$invoiceFormBuilder->add('invoice', AddressType::class, array(
'label_format' => 'form.address.%name%',

));

This option is inherited by the child types. With the code above, the label of the street field of both
forms will use the form.address.street keyword message.

Two variables are available in the label format:
%id%%id%

A unique identifier for the field, consisting of the complete path to the field and the field name (e.g.
profile_address_street);

%name%%name%

The field name (e.g. street).

The default value (null) results in a "humanized" version of the field name.

The label_format option is evaluated in the form theme. Make sure to update your templates in
case you customized form theming.

mapped

type: boolean default: true

If you wish the field to be ignored when reading or writing to the object, you can set the mapped option
to false.

required

type: boolean default: true

If true, an HTML5 required attribute3 will be rendered. The corresponding label will also render with a
required class.

This is superficial and independent from validation. At best, if you let Symfony guess your field type, then
the value of this option will be guessed from your validation information.

The required option also affects how empty data for each field is handled. For more details, see the
empty_data option.

Form Variables

Variable Type Usage

money_pattern string The format to use to display the money, including the currency.

3. http://diveintohtml5.info/forms.html

PDF brought to you by

generated on May 24, 2018

Chapter 15: MoneyType Field | 96

http://sensiolabs.com

Chapter 16

NumberType Field

Renders an input text field and specializes in handling number input. This type offers different options
for the scale, rounding and grouping that you want to use for your number.

Rendered as input text field

Options
• grouping
• scale
• rounding_mode

Overridden
options • compound

Inherited
options • data

• disabled
• empty_data
• error_bubbling
• error_mapping
• invalid_message
• invalid_message_parameters
• label
• label_attr
• label_format
• mapped
• required

Parent type FormType

Class NumberType1

1. https://api.symfony.com/4.0/Symfony/Component/Form/Extension/Core/Type/NumberType.html

PDF brought to you by

generated on May 24, 2018

Chapter 16: NumberType Field | 97

http://sensiolabs.com

Field Options

grouping

type: integer default: false

This value is used internally as the NumberFormatter::GROUPING_USED value when using PHP's
NumberFormatter class. Its documentation is non-existent, but it appears that if you set this to true,
numbers will be grouped with a comma or period (depending on your locale): 12345.123 would display
as 12,345.123.

scale

New in version 2.7: The scale option was introduced in Symfony 2.7. Prior to Symfony 2.7, it was
known as precision.

type: integer default: Locale-specific (usually around 3)

This specifies how many decimals will be allowed until the field rounds the submitted value (via
rounding_mode). For example, if scale is set to 2, a submitted value of 20.123 will be rounded to,
for example, 20.12 (depending on your rounding_mode).

rounding_mode

type: integer default: NumberToLocalizedStringTransformer::ROUND_HALF_UP

If a submitted number needs to be rounded (based on the scale option), you have several configurable
options for that rounding. Each option is a constant on the
NumberToLocalizedStringTransformer2:

• NumberToLocalizedStringTransformer::ROUND_DOWN Round towards zero.
• NumberToLocalizedStringTransformer::ROUND_FLOOR Round towards negative infinity.
• NumberToLocalizedStringTransformer::ROUND_UP Round away from zero.
• NumberToLocalizedStringTransformer::ROUND_CEILING Round towards positive infinity.
• NumberToLocalizedStringTransformer::ROUND_HALF_DOWN Round towards the "nearest neighbor". If both

neighbors are equidistant, round down.
• NumberToLocalizedStringTransformer::ROUND_HALF_EVEN Round towards the "nearest neighbor". If both

neighbors are equidistant, round towards the even neighbor.
• NumberToLocalizedStringTransformer::ROUND_HALF_UP Round towards the "nearest neighbor". If both

neighbors are equidistant, round up.

Overridden Options

compound

type: boolean default: false

This option specifies whether the type contains child types or not. This option is managed internally for
built-in types, so there is no need to configure it explicitly.

2. https://api.symfony.com/4.0/Symfony/Component/Form/Extension/Core/DataTransformer/NumberToLocalizedStringTransformer.html

PDF brought to you by

generated on May 24, 2018

Chapter 16: NumberType Field | 98

http://sensiolabs.com

Listing 16-1

Listing 16-2

Inherited Options
These options inherit from the FormType:

data

type: mixed default: Defaults to field of the underlying structure.

When you create a form, each field initially displays the value of the corresponding property of the form's
domain data (e.g. if you bind an object to the form). If you want to override this initial value for the form
or an individual field, you can set it in the data option:

1
2
3
4
5
6

use Symfony\Component\Form\Extension\Core\Type\HiddenType;
// ...

$builder->add('token', HiddenType::class, array(
'data' => 'abcdef',

));

The data option always overrides the value taken from the domain data (object) when rendering.
This means the object value is also overriden when the form edits an already persisted object, causing
it to lose its persisted value when the form is submitted.

disabled

type: boolean default: false

If you don't want a user to modify the value of a field, you can set the disabled option to true. Any
submitted value will be ignored.

empty_data

type: mixed

The default value is '' (the empty string).

This option determines what value the field will return when the submitted value is empty (or missing).
It does not set an initial value if none is provided when the form is rendered in a view.

This means it helps you handling form submission with blank fields. For example, if you want the name
field to be explicitly set to John Doe when no value is selected, you can do it like this:

$builder->add('name', null, array(
'required' => false,
'empty_data' => 'John Doe',

));

This will still render an empty text box, but upon submission the John Doe value will be set. Use the
data or placeholder options to show this initial value in the rendered form.

If a form is compound, you can set empty_data as an array, object or closure. See the How to Configure
empty Data for a Form Class article for more details about these options.

If you want to set the empty_data option for your entire form class, see the How to Configure empty
Data for a Form Class article.

PDF brought to you by

generated on May 24, 2018

Chapter 16: NumberType Field | 99

http://sensiolabs.com

Listing 16-3

Listing 16-4

Form data transformers will still be applied to the empty_data value. This means that an empty
string will be cast to null. Use a custom data transformer if you explicitly want to return the empty
string.

error_bubbling

type: boolean default: false unless the form is compound

If true, any errors for this field will be passed to the parent field or form. For example, if set to true on
a normal field, any errors for that field will be attached to the main form, not to the specific field.

error_mapping

type: array default: array()

This option allows you to modify the target of a validation error.

Imagine you have a custom method named matchingCityAndZipCode() that validates whether the
city and zip code match. Unfortunately, there is no "matchingCityAndZipCode" field in your form, so all
that Symfony can do is display the error on top of the form.

With customized error mapping, you can do better: map the error to the city field so that it displays above
it:

1
2
3
4
5
6
7
8

public function configureOptions(OptionsResolver $resolver)
{

$resolver->setDefaults(array(
'error_mapping' => array(

'matchingCityAndZipCode' => 'city',
),

));
}

Here are the rules for the left and the right side of the mapping:

• The left side contains property paths;
• If the violation is generated on a property or method of a class, its path is simply propertyName;
• If the violation is generated on an entry of an array or ArrayAccess object, the property path is

[indexName];
• You can construct nested property paths by concatenating them, separating properties by dots. For

example: addresses[work].matchingCityAndZipCode;
• The right side contains simply the names of fields in the form.

By default, errors for any property that is not mapped will bubble up to the parent form. You can use
the dot (.) on the left side to map errors of all unmapped properties to a particular field. For instance, to
map all these errors to the city field, use:

1
2
3
4
5

$resolver->setDefaults(array(
'error_mapping' => array(

'.' => 'city',
),

));

invalid_message

type: string default: This value is not valid

This is the validation error message that's used if the data entered into this field doesn't make sense (i.e.
fails validation).

PDF brought to you by

generated on May 24, 2018

Chapter 16: NumberType Field | 100

http://sensiolabs.com

Listing 16-5

Listing 16-6

Listing 16-7

Listing 16-8

This might happen, for example, if the user enters a nonsense string into a TimeType field that cannot be
converted into a real time or if the user enters a string (e.g. apple) into a number field.

Normal (business logic) validation (such as when setting a minimum length for a field) should be set
using validation messages with your validation rules (reference).

invalid_message_parameters

type: array default: array()

When setting the invalid_message option, you may need to include some variables in the string. This
can be done by adding placeholders to that option and including the variables in this option:

1
2
3
4
5

$builder->add('some_field', SomeFormType::class, array(
// ...
'invalid_message' => 'You entered an invalid value, it should include %num% letters',
'invalid_message_parameters' => array('%num%' => 6),

));

label

type: string default: The label is "guessed" from the field name

Sets the label that will be used when rendering the field. Setting to false will suppress the label. The label
can also be directly set inside the template:

1 {{ form_label(form.name, 'Your name') }}

label_attr

type: array default: array()

Sets the HTML attributes for the <label> element, which will be used when rendering the label for the
field. It's an associative array with HTML attribute as a key. This attributes can also be directly set inside
the template:

1
2
3

{{ form_label(form.name, 'Your name', {
'label_attr': {'class': 'CUSTOM_LABEL_CLASS'}

}) }}

label_format

type: string default: null

Configures the string used as the label of the field, in case the label option was not set. This is useful
when using keyword translation messages.

If you're using keyword translation messages as labels, you often end up having multiple keyword
messages for the same label (e.g. profile_address_street, invoice_address_street). This is
because the label is build for each "path" to a field. To avoid duplicated keyword messages, you can
configure the label format to a static value, like:

1
2
3
4
5
6

// ...
$profileFormBuilder->add('address', AddressType::class, array(

'label_format' => 'form.address.%name%',
));

$invoiceFormBuilder->add('invoice', AddressType::class, array(

PDF brought to you by

generated on May 24, 2018

Chapter 16: NumberType Field | 101

http://sensiolabs.com

7
8

'label_format' => 'form.address.%name%',
));

This option is inherited by the child types. With the code above, the label of the street field of both
forms will use the form.address.street keyword message.

Two variables are available in the label format:
%id%%id%

A unique identifier for the field, consisting of the complete path to the field and the field name (e.g.
profile_address_street);

%name%%name%

The field name (e.g. street).

The default value (null) results in a "humanized" version of the field name.

The label_format option is evaluated in the form theme. Make sure to update your templates in
case you customized form theming.

mapped

type: boolean default: true

If you wish the field to be ignored when reading or writing to the object, you can set the mapped option
to false.

required

type: boolean default: true

If true, an HTML5 required attribute3 will be rendered. The corresponding label will also render with a
required class.

This is superficial and independent from validation. At best, if you let Symfony guess your field type, then
the value of this option will be guessed from your validation information.

The required option also affects how empty data for each field is handled. For more details, see the
empty_data option.

3. http://diveintohtml5.info/forms.html

PDF brought to you by

generated on May 24, 2018

Chapter 16: NumberType Field | 102

http://sensiolabs.com

Chapter 17

PasswordType Field

The PasswordType field renders an input password text box.

Rendered as input password field

Options
• always_empty

Overridden
options • trim

Inherited
options • disabled

• empty_data
• error_bubbling
• error_mapping
• label
• label_attr
• label_format
• mapped
• required

Parent type TextType

Class PasswordType1

Field Options

always_empty

type: boolean default: true

1. https://api.symfony.com/4.0/Symfony/Component/Form/Extension/Core/Type/PasswordType.html

PDF brought to you by

generated on May 24, 2018

Chapter 17: PasswordType Field | 103

http://sensiolabs.com

Listing 17-1

If set to true, the field will always render blank, even if the corresponding field has a value. When set
to false, the password field will be rendered with the value attribute set to its true value only upon
submission.

Put simply, if for some reason you want to render your password field with the password value already
entered into the box, set this to false and submit the form.

Overridden Options

trim

type: boolean default: false

Unlike the rest of form types, the PasswordType doesn't apply the trim2 function to the value
submitted by the user. This ensures that the password is merged back onto the underlying object exactly
as it was typed by the user.

Inherited Options
These options inherit from the FormType:

disabled

type: boolean default: false

If you don't want a user to modify the value of a field, you can set the disabled option to true. Any
submitted value will be ignored.

empty_data

type: mixed

The default value is '' (the empty string).

This option determines what value the field will return when the submitted value is empty (or missing).
It does not set an initial value if none is provided when the form is rendered in a view.

This means it helps you handling form submission with blank fields. For example, if you want the name
field to be explicitly set to John Doe when no value is selected, you can do it like this:

$builder->add('name', null, array(
'required' => false,
'empty_data' => 'John Doe',

));

This will still render an empty text box, but upon submission the John Doe value will be set. Use the
data or placeholder options to show this initial value in the rendered form.

If a form is compound, you can set empty_data as an array, object or closure. See the How to Configure
empty Data for a Form Class article for more details about these options.

If you want to set the empty_data option for your entire form class, see the How to Configure empty
Data for a Form Class article.

2. https://secure.php.net/manual/en/function.trim.php

PDF brought to you by

generated on May 24, 2018

Chapter 17: PasswordType Field | 104

http://sensiolabs.com

Listing 17-2

Listing 17-3

Form data transformers will still be applied to the empty_data value. This means that an empty
string will be cast to null. Use a custom data transformer if you explicitly want to return the empty
string.

error_bubbling

type: boolean default: false unless the form is compound

If true, any errors for this field will be passed to the parent field or form. For example, if set to true on
a normal field, any errors for that field will be attached to the main form, not to the specific field.

error_mapping

type: array default: array()

This option allows you to modify the target of a validation error.

Imagine you have a custom method named matchingCityAndZipCode() that validates whether the
city and zip code match. Unfortunately, there is no "matchingCityAndZipCode" field in your form, so all
that Symfony can do is display the error on top of the form.

With customized error mapping, you can do better: map the error to the city field so that it displays above
it:

1
2
3
4
5
6
7
8

public function configureOptions(OptionsResolver $resolver)
{

$resolver->setDefaults(array(
'error_mapping' => array(

'matchingCityAndZipCode' => 'city',
),

));
}

Here are the rules for the left and the right side of the mapping:

• The left side contains property paths;
• If the violation is generated on a property or method of a class, its path is simply propertyName;
• If the violation is generated on an entry of an array or ArrayAccess object, the property path is

[indexName];
• You can construct nested property paths by concatenating them, separating properties by dots. For

example: addresses[work].matchingCityAndZipCode;
• The right side contains simply the names of fields in the form.

By default, errors for any property that is not mapped will bubble up to the parent form. You can use
the dot (.) on the left side to map errors of all unmapped properties to a particular field. For instance, to
map all these errors to the city field, use:

1
2
3
4
5

$resolver->setDefaults(array(
'error_mapping' => array(

'.' => 'city',
),

));

label

type: string default: The label is "guessed" from the field name

Sets the label that will be used when rendering the field. Setting to false will suppress the label. The label
can also be directly set inside the template:

PDF brought to you by

generated on May 24, 2018

Chapter 17: PasswordType Field | 105

http://sensiolabs.com

Listing 17-4

Listing 17-5

Listing 17-6

1 {{ form_label(form.name, 'Your name') }}

label_attr

type: array default: array()

Sets the HTML attributes for the <label> element, which will be used when rendering the label for the
field. It's an associative array with HTML attribute as a key. This attributes can also be directly set inside
the template:

1
2
3

{{ form_label(form.name, 'Your name', {
'label_attr': {'class': 'CUSTOM_LABEL_CLASS'}

}) }}

label_format

type: string default: null

Configures the string used as the label of the field, in case the label option was not set. This is useful
when using keyword translation messages.

If you're using keyword translation messages as labels, you often end up having multiple keyword
messages for the same label (e.g. profile_address_street, invoice_address_street). This is
because the label is build for each "path" to a field. To avoid duplicated keyword messages, you can
configure the label format to a static value, like:

1
2
3
4
5
6
7
8

// ...
$profileFormBuilder->add('address', AddressType::class, array(

'label_format' => 'form.address.%name%',
));

$invoiceFormBuilder->add('invoice', AddressType::class, array(
'label_format' => 'form.address.%name%',

));

This option is inherited by the child types. With the code above, the label of the street field of both
forms will use the form.address.street keyword message.

Two variables are available in the label format:
%id%%id%

A unique identifier for the field, consisting of the complete path to the field and the field name (e.g.
profile_address_street);

%name%%name%

The field name (e.g. street).

The default value (null) results in a "humanized" version of the field name.

The label_format option is evaluated in the form theme. Make sure to update your templates in
case you customized form theming.

mapped

type: boolean default: true

PDF brought to you by

generated on May 24, 2018

Chapter 17: PasswordType Field | 106

http://sensiolabs.com

If you wish the field to be ignored when reading or writing to the object, you can set the mapped option
to false.

required

type: boolean default: true

If true, an HTML5 required attribute3 will be rendered. The corresponding label will also render with a
required class.

This is superficial and independent from validation. At best, if you let Symfony guess your field type, then
the value of this option will be guessed from your validation information.

The required option also affects how empty data for each field is handled. For more details, see the
empty_data option.

3. http://diveintohtml5.info/forms.html

PDF brought to you by

generated on May 24, 2018

Chapter 17: PasswordType Field | 107

http://sensiolabs.com

Chapter 18

PercentType Field

The PercentType renders an input text field and specializes in handling percentage data. If your
percentage data is stored as a decimal (e.g. .95), you can use this field out-of-the-box. If you store your
data as a number (e.g. 95), you should set the type option to integer.

This field adds a percentage sign "%" after the input box.

Rendered as input text field

Options
• scale
• type

Overridden
options • compound

Inherited
options • data

• disabled
• empty_data
• error_bubbling
• error_mapping
• invalid_message
• invalid_message_parameters
• label
• label_attr
• label_format
• mapped
• required

Parent type FormType

Class PercentType1

1. https://api.symfony.com/4.0/Symfony/Component/Form/Extension/Core/Type/PercentType.html

PDF brought to you by

generated on May 24, 2018

Chapter 18: PercentType Field | 108

http://sensiolabs.com

Listing 18-1

Field Options

scale

type: integer default: 0

By default, the input numbers are rounded. To allow for more decimal places, use this option.

type

type: string default: fractional

This controls how your data is stored on your object. For example, a percentage corresponding to "55%",
might be stored as .55 or 55 on your object. The two "types" handle these two cases:

• fractional If your data is stored as a decimal (e.g. .55), use this type. The data will be multiplied by 100

before being shown to the user (e.g. 55). The submitted data will be divided by 100 on form submit
so that the decimal value is stored (.55);

• integer If your data is stored as an integer (e.g. 55), then use this option. The raw value (55) is shown
to the user and stored on your object. Note that this only works for integer values.

Overridden Options

compound

type: boolean default: false

This option specifies whether the type contains child types or not. This option is managed internally for
built-in types, so there is no need to configure it explicitly.

Inherited Options
These options inherit from the FormType:

data

type: mixed default: Defaults to field of the underlying structure.

When you create a form, each field initially displays the value of the corresponding property of the form's
domain data (e.g. if you bind an object to the form). If you want to override this initial value for the form
or an individual field, you can set it in the data option:

1
2
3
4
5
6

use Symfony\Component\Form\Extension\Core\Type\HiddenType;
// ...

$builder->add('token', HiddenType::class, array(
'data' => 'abcdef',

));

The data option always overrides the value taken from the domain data (object) when rendering.
This means the object value is also overriden when the form edits an already persisted object, causing
it to lose its persisted value when the form is submitted.

PDF brought to you by

generated on May 24, 2018

Chapter 18: PercentType Field | 109

http://sensiolabs.com

Listing 18-2

Listing 18-3

disabled

type: boolean default: false

If you don't want a user to modify the value of a field, you can set the disabled option to true. Any
submitted value will be ignored.

empty_data

type: mixed

The default value is '' (the empty string).

This option determines what value the field will return when the submitted value is empty (or missing).
It does not set an initial value if none is provided when the form is rendered in a view.

This means it helps you handling form submission with blank fields. For example, if you want the name
field to be explicitly set to John Doe when no value is selected, you can do it like this:

$builder->add('name', null, array(
'required' => false,
'empty_data' => 'John Doe',

));

This will still render an empty text box, but upon submission the John Doe value will be set. Use the
data or placeholder options to show this initial value in the rendered form.

If a form is compound, you can set empty_data as an array, object or closure. See the How to Configure
empty Data for a Form Class article for more details about these options.

If you want to set the empty_data option for your entire form class, see the How to Configure empty
Data for a Form Class article.

Form data transformers will still be applied to the empty_data value. This means that an empty
string will be cast to null. Use a custom data transformer if you explicitly want to return the empty
string.

error_bubbling

type: boolean default: false unless the form is compound

If true, any errors for this field will be passed to the parent field or form. For example, if set to true on
a normal field, any errors for that field will be attached to the main form, not to the specific field.

error_mapping

type: array default: array()

This option allows you to modify the target of a validation error.

Imagine you have a custom method named matchingCityAndZipCode() that validates whether the
city and zip code match. Unfortunately, there is no "matchingCityAndZipCode" field in your form, so all
that Symfony can do is display the error on top of the form.

With customized error mapping, you can do better: map the error to the city field so that it displays above
it:

PDF brought to you by

generated on May 24, 2018

Chapter 18: PercentType Field | 110

http://sensiolabs.com

Listing 18-4

Listing 18-5

1
2
3
4
5
6
7
8

public function configureOptions(OptionsResolver $resolver)
{

$resolver->setDefaults(array(
'error_mapping' => array(

'matchingCityAndZipCode' => 'city',
),

));
}

Here are the rules for the left and the right side of the mapping:

• The left side contains property paths;
• If the violation is generated on a property or method of a class, its path is simply propertyName;
• If the violation is generated on an entry of an array or ArrayAccess object, the property path is

[indexName];
• You can construct nested property paths by concatenating them, separating properties by dots. For

example: addresses[work].matchingCityAndZipCode;
• The right side contains simply the names of fields in the form.

By default, errors for any property that is not mapped will bubble up to the parent form. You can use
the dot (.) on the left side to map errors of all unmapped properties to a particular field. For instance, to
map all these errors to the city field, use:

1
2
3
4
5

$resolver->setDefaults(array(
'error_mapping' => array(

'.' => 'city',
),

));

invalid_message

type: string default: This value is not valid

This is the validation error message that's used if the data entered into this field doesn't make sense (i.e.
fails validation).

This might happen, for example, if the user enters a nonsense string into a TimeType field that cannot be
converted into a real time or if the user enters a string (e.g. apple) into a number field.

Normal (business logic) validation (such as when setting a minimum length for a field) should be set
using validation messages with your validation rules (reference).

invalid_message_parameters

type: array default: array()

When setting the invalid_message option, you may need to include some variables in the string. This
can be done by adding placeholders to that option and including the variables in this option:

1
2
3
4
5

$builder->add('some_field', SomeFormType::class, array(
// ...
'invalid_message' => 'You entered an invalid value, it should include %num% letters',
'invalid_message_parameters' => array('%num%' => 6),

));

label

type: string default: The label is "guessed" from the field name

PDF brought to you by

generated on May 24, 2018

Chapter 18: PercentType Field | 111

http://sensiolabs.com

Listing 18-6

Listing 18-7

Listing 18-8

Sets the label that will be used when rendering the field. Setting to false will suppress the label. The label
can also be directly set inside the template:

1 {{ form_label(form.name, 'Your name') }}

label_attr

type: array default: array()

Sets the HTML attributes for the <label> element, which will be used when rendering the label for the
field. It's an associative array with HTML attribute as a key. This attributes can also be directly set inside
the template:

1
2
3

{{ form_label(form.name, 'Your name', {
'label_attr': {'class': 'CUSTOM_LABEL_CLASS'}

}) }}

label_format

type: string default: null

Configures the string used as the label of the field, in case the label option was not set. This is useful
when using keyword translation messages.

If you're using keyword translation messages as labels, you often end up having multiple keyword
messages for the same label (e.g. profile_address_street, invoice_address_street). This is
because the label is build for each "path" to a field. To avoid duplicated keyword messages, you can
configure the label format to a static value, like:

1
2
3
4
5
6
7
8

// ...
$profileFormBuilder->add('address', AddressType::class, array(

'label_format' => 'form.address.%name%',
));

$invoiceFormBuilder->add('invoice', AddressType::class, array(
'label_format' => 'form.address.%name%',

));

This option is inherited by the child types. With the code above, the label of the street field of both
forms will use the form.address.street keyword message.

Two variables are available in the label format:
%id%%id%

A unique identifier for the field, consisting of the complete path to the field and the field name (e.g.
profile_address_street);

%name%%name%

The field name (e.g. street).

The default value (null) results in a "humanized" version of the field name.

The label_format option is evaluated in the form theme. Make sure to update your templates in
case you customized form theming.

PDF brought to you by

generated on May 24, 2018

Chapter 18: PercentType Field | 112

http://sensiolabs.com

mapped

type: boolean default: true

If you wish the field to be ignored when reading or writing to the object, you can set the mapped option
to false.

required

type: boolean default: true

If true, an HTML5 required attribute2 will be rendered. The corresponding label will also render with a
required class.

This is superficial and independent from validation. At best, if you let Symfony guess your field type, then
the value of this option will be guessed from your validation information.

The required option also affects how empty data for each field is handled. For more details, see the
empty_data option.

2. http://diveintohtml5.info/forms.html

PDF brought to you by

generated on May 24, 2018

Chapter 18: PercentType Field | 113

http://sensiolabs.com

Chapter 19

SearchType Field

This renders an <input type="search" /> field, which is a text box with special functionality
supported by some browsers.

Read about the input search field at DiveIntoHTML5.info1

Rendered as input search field

Inherited
options • disabled

• empty_data
• error_bubbling
• error_mapping
• label
• label_attr
• label_format
• mapped
• required
• trim

Parent type TextType

Class SearchType2

Inherited Options
These options inherit from the FormType:

disabled

type: boolean default: false

1. http://diveintohtml5.info/forms.html#type-search
2. https://api.symfony.com/4.0/Symfony/Component/Form/Extension/Core/Type/SearchType.html

PDF brought to you by

generated on May 24, 2018

Chapter 19: SearchType Field | 114

http://sensiolabs.com

Listing 19-1

Listing 19-2

If you don't want a user to modify the value of a field, you can set the disabled option to true. Any
submitted value will be ignored.

empty_data

type: mixed

The default value is '' (the empty string).

This option determines what value the field will return when the submitted value is empty (or missing).
It does not set an initial value if none is provided when the form is rendered in a view.

This means it helps you handling form submission with blank fields. For example, if you want the name
field to be explicitly set to John Doe when no value is selected, you can do it like this:

$builder->add('name', null, array(
'required' => false,
'empty_data' => 'John Doe',

));

This will still render an empty text box, but upon submission the John Doe value will be set. Use the
data or placeholder options to show this initial value in the rendered form.

If a form is compound, you can set empty_data as an array, object or closure. See the How to Configure
empty Data for a Form Class article for more details about these options.

If you want to set the empty_data option for your entire form class, see the How to Configure empty
Data for a Form Class article.

Form data transformers will still be applied to the empty_data value. This means that an empty
string will be cast to null. Use a custom data transformer if you explicitly want to return the empty
string.

error_bubbling

type: boolean default: false unless the form is compound

If true, any errors for this field will be passed to the parent field or form. For example, if set to true on
a normal field, any errors for that field will be attached to the main form, not to the specific field.

error_mapping

type: array default: array()

This option allows you to modify the target of a validation error.

Imagine you have a custom method named matchingCityAndZipCode() that validates whether the
city and zip code match. Unfortunately, there is no "matchingCityAndZipCode" field in your form, so all
that Symfony can do is display the error on top of the form.

With customized error mapping, you can do better: map the error to the city field so that it displays above
it:

1
2
3
4
5

public function configureOptions(OptionsResolver $resolver)
{

$resolver->setDefaults(array(
'error_mapping' => array(

'matchingCityAndZipCode' => 'city',

PDF brought to you by

generated on May 24, 2018

Chapter 19: SearchType Field | 115

http://sensiolabs.com

Listing 19-3

Listing 19-4

Listing 19-5

6
7
8

),
));

}

Here are the rules for the left and the right side of the mapping:

• The left side contains property paths;
• If the violation is generated on a property or method of a class, its path is simply propertyName;
• If the violation is generated on an entry of an array or ArrayAccess object, the property path is

[indexName];
• You can construct nested property paths by concatenating them, separating properties by dots. For

example: addresses[work].matchingCityAndZipCode;
• The right side contains simply the names of fields in the form.

By default, errors for any property that is not mapped will bubble up to the parent form. You can use
the dot (.) on the left side to map errors of all unmapped properties to a particular field. For instance, to
map all these errors to the city field, use:

1
2
3
4
5

$resolver->setDefaults(array(
'error_mapping' => array(

'.' => 'city',
),

));

label

type: string default: The label is "guessed" from the field name

Sets the label that will be used when rendering the field. Setting to false will suppress the label. The label
can also be directly set inside the template:

1 {{ form_label(form.name, 'Your name') }}

label_attr

type: array default: array()

Sets the HTML attributes for the <label> element, which will be used when rendering the label for the
field. It's an associative array with HTML attribute as a key. This attributes can also be directly set inside
the template:

1
2
3

{{ form_label(form.name, 'Your name', {
'label_attr': {'class': 'CUSTOM_LABEL_CLASS'}

}) }}

label_format

type: string default: null

Configures the string used as the label of the field, in case the label option was not set. This is useful
when using keyword translation messages.

If you're using keyword translation messages as labels, you often end up having multiple keyword
messages for the same label (e.g. profile_address_street, invoice_address_street). This is
because the label is build for each "path" to a field. To avoid duplicated keyword messages, you can
configure the label format to a static value, like:

PDF brought to you by

generated on May 24, 2018

Chapter 19: SearchType Field | 116

http://sensiolabs.com

Listing 19-6 1
2
3
4
5
6
7
8

// ...
$profileFormBuilder->add('address', AddressType::class, array(

'label_format' => 'form.address.%name%',
));

$invoiceFormBuilder->add('invoice', AddressType::class, array(
'label_format' => 'form.address.%name%',

));

This option is inherited by the child types. With the code above, the label of the street field of both
forms will use the form.address.street keyword message.

Two variables are available in the label format:
%id%%id%

A unique identifier for the field, consisting of the complete path to the field and the field name (e.g.
profile_address_street);

%name%%name%

The field name (e.g. street).

The default value (null) results in a "humanized" version of the field name.

The label_format option is evaluated in the form theme. Make sure to update your templates in
case you customized form theming.

mapped

type: boolean default: true

If you wish the field to be ignored when reading or writing to the object, you can set the mapped option
to false.

required

type: boolean default: true

If true, an HTML5 required attribute3 will be rendered. The corresponding label will also render with a
required class.

This is superficial and independent from validation. At best, if you let Symfony guess your field type, then
the value of this option will be guessed from your validation information.

The required option also affects how empty data for each field is handled. For more details, see the
empty_data option.

trim

type: boolean default: true

If true, the whitespace of the submitted string value will be stripped via the trim4 function when the data
is bound. This guarantees that if a value is submitted with extra whitespace, it will be removed before the
value is merged back onto the underlying object.

3. http://diveintohtml5.info/forms.html

4. https://secure.php.net/manual/en/function.trim.php

PDF brought to you by

generated on May 24, 2018

Chapter 19: SearchType Field | 117

http://sensiolabs.com

Chapter 20

UrlType Field

The UrlType field is a text field that prepends the submitted value with a given protocol (e.g. http://)
if the submitted value doesn't already have a protocol.

Rendered as input url field

Options
• default_protocol

Inherited
options • data

• disabled
• empty_data
• error_bubbling
• error_mapping
• label
• label_attr
• label_format
• mapped
• required
• trim

Parent type TextType

Class UrlType1

Field Options

default_protocol

type: string default: http

1. https://api.symfony.com/4.0/Symfony/Component/Form/Extension/Core/Type/UrlType.html

PDF brought to you by

generated on May 24, 2018

Chapter 20: UrlType Field | 118

http://sensiolabs.com

Listing 20-1

Listing 20-2

If a value is submitted that doesn't begin with some protocol (e.g. http://, ftp://, etc), this protocol
will be prepended to the string when the data is submitted to the form.

Inherited Options
These options inherit from the FormType:

data

type: mixed default: Defaults to field of the underlying structure.

When you create a form, each field initially displays the value of the corresponding property of the form's
domain data (e.g. if you bind an object to the form). If you want to override this initial value for the form
or an individual field, you can set it in the data option:

1
2
3
4
5
6

use Symfony\Component\Form\Extension\Core\Type\HiddenType;
// ...

$builder->add('token', HiddenType::class, array(
'data' => 'abcdef',

));

The data option always overrides the value taken from the domain data (object) when rendering.
This means the object value is also overriden when the form edits an already persisted object, causing
it to lose its persisted value when the form is submitted.

disabled

type: boolean default: false

If you don't want a user to modify the value of a field, you can set the disabled option to true. Any
submitted value will be ignored.

empty_data

type: mixed

The default value is '' (the empty string).

This option determines what value the field will return when the submitted value is empty (or missing).
It does not set an initial value if none is provided when the form is rendered in a view.

This means it helps you handling form submission with blank fields. For example, if you want the name
field to be explicitly set to John Doe when no value is selected, you can do it like this:

$builder->add('name', null, array(
'required' => false,
'empty_data' => 'John Doe',

));

This will still render an empty text box, but upon submission the John Doe value will be set. Use the
data or placeholder options to show this initial value in the rendered form.

If a form is compound, you can set empty_data as an array, object or closure. See the How to Configure
empty Data for a Form Class article for more details about these options.

PDF brought to you by

generated on May 24, 2018

Chapter 20: UrlType Field | 119

http://sensiolabs.com

Listing 20-3

Listing 20-4

If you want to set the empty_data option for your entire form class, see the How to Configure empty
Data for a Form Class article.

Form data transformers will still be applied to the empty_data value. This means that an empty
string will be cast to null. Use a custom data transformer if you explicitly want to return the empty
string.

error_bubbling

type: boolean default: false unless the form is compound

If true, any errors for this field will be passed to the parent field or form. For example, if set to true on
a normal field, any errors for that field will be attached to the main form, not to the specific field.

error_mapping

type: array default: array()

This option allows you to modify the target of a validation error.

Imagine you have a custom method named matchingCityAndZipCode() that validates whether the
city and zip code match. Unfortunately, there is no "matchingCityAndZipCode" field in your form, so all
that Symfony can do is display the error on top of the form.

With customized error mapping, you can do better: map the error to the city field so that it displays above
it:

1
2
3
4
5
6
7
8

public function configureOptions(OptionsResolver $resolver)
{

$resolver->setDefaults(array(
'error_mapping' => array(

'matchingCityAndZipCode' => 'city',
),

));
}

Here are the rules for the left and the right side of the mapping:

• The left side contains property paths;
• If the violation is generated on a property or method of a class, its path is simply propertyName;
• If the violation is generated on an entry of an array or ArrayAccess object, the property path is

[indexName];
• You can construct nested property paths by concatenating them, separating properties by dots. For

example: addresses[work].matchingCityAndZipCode;
• The right side contains simply the names of fields in the form.

By default, errors for any property that is not mapped will bubble up to the parent form. You can use
the dot (.) on the left side to map errors of all unmapped properties to a particular field. For instance, to
map all these errors to the city field, use:

1
2
3
4
5

$resolver->setDefaults(array(
'error_mapping' => array(

'.' => 'city',
),

));

PDF brought to you by

generated on May 24, 2018

Chapter 20: UrlType Field | 120

http://sensiolabs.com

Listing 20-5

Listing 20-6

Listing 20-7

label

type: string default: The label is "guessed" from the field name

Sets the label that will be used when rendering the field. Setting to false will suppress the label. The label
can also be directly set inside the template:

1 {{ form_label(form.name, 'Your name') }}

label_attr

type: array default: array()

Sets the HTML attributes for the <label> element, which will be used when rendering the label for the
field. It's an associative array with HTML attribute as a key. This attributes can also be directly set inside
the template:

1
2
3

{{ form_label(form.name, 'Your name', {
'label_attr': {'class': 'CUSTOM_LABEL_CLASS'}

}) }}

label_format

type: string default: null

Configures the string used as the label of the field, in case the label option was not set. This is useful
when using keyword translation messages.

If you're using keyword translation messages as labels, you often end up having multiple keyword
messages for the same label (e.g. profile_address_street, invoice_address_street). This is
because the label is build for each "path" to a field. To avoid duplicated keyword messages, you can
configure the label format to a static value, like:

1
2
3
4
5
6
7
8

// ...
$profileFormBuilder->add('address', AddressType::class, array(

'label_format' => 'form.address.%name%',
));

$invoiceFormBuilder->add('invoice', AddressType::class, array(
'label_format' => 'form.address.%name%',

));

This option is inherited by the child types. With the code above, the label of the street field of both
forms will use the form.address.street keyword message.

Two variables are available in the label format:
%id%%id%

A unique identifier for the field, consisting of the complete path to the field and the field name (e.g.
profile_address_street);

%name%%name%

The field name (e.g. street).

The default value (null) results in a "humanized" version of the field name.

The label_format option is evaluated in the form theme. Make sure to update your templates in
case you customized form theming.

PDF brought to you by

generated on May 24, 2018

Chapter 20: UrlType Field | 121

http://sensiolabs.com

mapped

type: boolean default: true

If you wish the field to be ignored when reading or writing to the object, you can set the mapped option
to false.

required

type: boolean default: true

If true, an HTML5 required attribute2 will be rendered. The corresponding label will also render with a
required class.

This is superficial and independent from validation. At best, if you let Symfony guess your field type, then
the value of this option will be guessed from your validation information.

The required option also affects how empty data for each field is handled. For more details, see the
empty_data option.

trim

type: boolean default: true

If true, the whitespace of the submitted string value will be stripped via the trim3 function when the data
is bound. This guarantees that if a value is submitted with extra whitespace, it will be removed before the
value is merged back onto the underlying object.

2. http://diveintohtml5.info/forms.html

3. https://secure.php.net/manual/en/function.trim.php

PDF brought to you by

generated on May 24, 2018

Chapter 20: UrlType Field | 122

http://sensiolabs.com

Listing 21-1

Chapter 21

RangeType Field

The RangeType field is a slider that is rendered using the HTML5 <input type="range" /> tag.

Rendered as input range field (slider in HTML5 supported browser)

Inherited
options • attr

• data
• disabled
• empty_data
• error_bubbling
• error_mapping
• label
• label_attr
• mapped
• required
• trim

Parent type TextType

Class RangeType1

Basic Usage

1
2
3
4
5
6
7
8
9

use Symfony\Component\Form\Extension\Core\Type\RangeType;
// ...

$builder->add('name', RangeType::class, array(
'attr' => array(

'min' => 5,
'max' => 50

)
));

1. https://api.symfony.com/4.0/Symfony/Component/Form/Extension/Core/Type/RangeType.html

PDF brought to you by

generated on May 24, 2018

Chapter 21: RangeType Field | 123

http://sensiolabs.com

Listing 21-2

Listing 21-3

Listing 21-4

Inherited Options
These options inherit from the FormType:

attr

type: array default: array()

If you want to add extra attributes to an HTML field representation you can use the attr option. It's an
associative array with HTML attributes as keys. This can be useful when you need to set a custom class
for some widget:

$builder->add('body', TextareaType::class, array(
'attr' => array('class' => 'tinymce'),

));

data

type: mixed default: Defaults to field of the underlying structure.

When you create a form, each field initially displays the value of the corresponding property of the form's
domain data (e.g. if you bind an object to the form). If you want to override this initial value for the form
or an individual field, you can set it in the data option:

1
2
3
4
5
6

use Symfony\Component\Form\Extension\Core\Type\HiddenType;
// ...

$builder->add('token', HiddenType::class, array(
'data' => 'abcdef',

));

The data option always overrides the value taken from the domain data (object) when rendering.
This means the object value is also overriden when the form edits an already persisted object, causing
it to lose its persisted value when the form is submitted.

disabled

type: boolean default: false

If you don't want a user to modify the value of a field, you can set the disabled option to true. Any
submitted value will be ignored.

empty_data

type: mixed

The default value is '' (the empty string).

This option determines what value the field will return when the submitted value is empty (or missing).
It does not set an initial value if none is provided when the form is rendered in a view.

This means it helps you handling form submission with blank fields. For example, if you want the name
field to be explicitly set to John Doe when no value is selected, you can do it like this:

$builder->add('name', null, array(
'required' => false,
'empty_data' => 'John Doe',

));

PDF brought to you by

generated on May 24, 2018

Chapter 21: RangeType Field | 124

http://sensiolabs.com

Listing 21-5

Listing 21-6

This will still render an empty text box, but upon submission the John Doe value will be set. Use the
data or placeholder options to show this initial value in the rendered form.

If a form is compound, you can set empty_data as an array, object or closure. See the How to Configure
empty Data for a Form Class article for more details about these options.

If you want to set the empty_data option for your entire form class, see the How to Configure empty
Data for a Form Class article.

Form data transformers will still be applied to the empty_data value. This means that an empty
string will be cast to null. Use a custom data transformer if you explicitly want to return the empty
string.

error_bubbling

type: boolean default: false unless the form is compound

If true, any errors for this field will be passed to the parent field or form. For example, if set to true on
a normal field, any errors for that field will be attached to the main form, not to the specific field.

error_mapping

type: array default: array()

This option allows you to modify the target of a validation error.

Imagine you have a custom method named matchingCityAndZipCode() that validates whether the
city and zip code match. Unfortunately, there is no "matchingCityAndZipCode" field in your form, so all
that Symfony can do is display the error on top of the form.

With customized error mapping, you can do better: map the error to the city field so that it displays above
it:

1
2
3
4
5
6
7
8

public function configureOptions(OptionsResolver $resolver)
{

$resolver->setDefaults(array(
'error_mapping' => array(

'matchingCityAndZipCode' => 'city',
),

));
}

Here are the rules for the left and the right side of the mapping:

• The left side contains property paths;
• If the violation is generated on a property or method of a class, its path is simply propertyName;
• If the violation is generated on an entry of an array or ArrayAccess object, the property path is

[indexName];
• You can construct nested property paths by concatenating them, separating properties by dots. For

example: addresses[work].matchingCityAndZipCode;
• The right side contains simply the names of fields in the form.

By default, errors for any property that is not mapped will bubble up to the parent form. You can use
the dot (.) on the left side to map errors of all unmapped properties to a particular field. For instance, to
map all these errors to the city field, use:

PDF brought to you by

generated on May 24, 2018

Chapter 21: RangeType Field | 125

http://sensiolabs.com

Listing 21-7

Listing 21-8

1
2
3
4
5

$resolver->setDefaults(array(
'error_mapping' => array(

'.' => 'city',
),

));

label

type: string default: The label is "guessed" from the field name

Sets the label that will be used when rendering the field. Setting to false will suppress the label. The label
can also be directly set inside the template:

1 {{ form_label(form.name, 'Your name') }}

label_attr

type: array default: array()

Sets the HTML attributes for the <label> element, which will be used when rendering the label for the
field. It's an associative array with HTML attribute as a key. This attributes can also be directly set inside
the template:

1
2
3

{{ form_label(form.name, 'Your name', {
'label_attr': {'class': 'CUSTOM_LABEL_CLASS'}

}) }}

mapped

type: boolean default: true

If you wish the field to be ignored when reading or writing to the object, you can set the mapped option
to false.

required

type: boolean default: true

If true, an HTML5 required attribute2 will be rendered. The corresponding label will also render with a
required class.

This is superficial and independent from validation. At best, if you let Symfony guess your field type, then
the value of this option will be guessed from your validation information.

The required option also affects how empty data for each field is handled. For more details, see the
empty_data option.

trim

type: boolean default: true

2. http://diveintohtml5.info/forms.html

PDF brought to you by

generated on May 24, 2018

Chapter 21: RangeType Field | 126

http://sensiolabs.com

If true, the whitespace of the submitted string value will be stripped via the trim3 function when the data
is bound. This guarantees that if a value is submitted with extra whitespace, it will be removed before the
value is merged back onto the underlying object.

3. https://secure.php.net/manual/en/function.trim.php

PDF brought to you by

generated on May 24, 2018

Chapter 21: RangeType Field | 127

http://sensiolabs.com

Chapter 22

TelType Field

The TelType field is a text field that is rendered using the HTML5 <input type="tel"> tag.
Following the recommended HTML5 behavior, the value of this type is not validated in any way, because
formats for telephone numbers vary too much depending on each country.

Nevertheless it may be useful to use this type in web applications because some browsers (e.g.
smartphone browsers) adapt the input keyboard to make it easier to input phone numbers.

Rendered as input tel field (a text box)

Inherited
options • data

• disabled
• empty_data
• error_bubbling
• error_mapping
• label
• label_attr
• label_format
• mapped
• required
• trim

Parent type TextType

Class TelType1

Inherited Options
These options inherit from the FormType:

1. https://api.symfony.com/4.0/Symfony/Component/Form/Extension/Core/Type/TelType.html

PDF brought to you by

generated on May 24, 2018

Chapter 22: TelType Field | 128

http://sensiolabs.com

Listing 22-1

Listing 22-2

data

type: mixed default: Defaults to field of the underlying structure.

When you create a form, each field initially displays the value of the corresponding property of the form's
domain data (e.g. if you bind an object to the form). If you want to override this initial value for the form
or an individual field, you can set it in the data option:

1
2
3
4
5
6

use Symfony\Component\Form\Extension\Core\Type\HiddenType;
// ...

$builder->add('token', HiddenType::class, array(
'data' => 'abcdef',

));

The data option always overrides the value taken from the domain data (object) when rendering.
This means the object value is also overriden when the form edits an already persisted object, causing
it to lose its persisted value when the form is submitted.

disabled

type: boolean default: false

If you don't want a user to modify the value of a field, you can set the disabled option to true. Any
submitted value will be ignored.

empty_data

type: mixed

The default value is '' (the empty string).

This option determines what value the field will return when the submitted value is empty (or missing).
It does not set an initial value if none is provided when the form is rendered in a view.

This means it helps you handling form submission with blank fields. For example, if you want the name
field to be explicitly set to John Doe when no value is selected, you can do it like this:

$builder->add('name', null, array(
'required' => false,
'empty_data' => 'John Doe',

));

This will still render an empty text box, but upon submission the John Doe value will be set. Use the
data or placeholder options to show this initial value in the rendered form.

If a form is compound, you can set empty_data as an array, object or closure. See the How to Configure
empty Data for a Form Class article for more details about these options.

If you want to set the empty_data option for your entire form class, see the How to Configure empty
Data for a Form Class article.

Form data transformers will still be applied to the empty_data value. This means that an empty
string will be cast to null. Use a custom data transformer if you explicitly want to return the empty
string.

PDF brought to you by

generated on May 24, 2018

Chapter 22: TelType Field | 129

http://sensiolabs.com

Listing 22-3

Listing 22-4

Listing 22-5

error_bubbling

type: boolean default: false unless the form is compound

If true, any errors for this field will be passed to the parent field or form. For example, if set to true on
a normal field, any errors for that field will be attached to the main form, not to the specific field.

error_mapping

type: array default: array()

This option allows you to modify the target of a validation error.

Imagine you have a custom method named matchingCityAndZipCode() that validates whether the
city and zip code match. Unfortunately, there is no "matchingCityAndZipCode" field in your form, so all
that Symfony can do is display the error on top of the form.

With customized error mapping, you can do better: map the error to the city field so that it displays above
it:

1
2
3
4
5
6
7
8

public function configureOptions(OptionsResolver $resolver)
{

$resolver->setDefaults(array(
'error_mapping' => array(

'matchingCityAndZipCode' => 'city',
),

));
}

Here are the rules for the left and the right side of the mapping:

• The left side contains property paths;
• If the violation is generated on a property or method of a class, its path is simply propertyName;
• If the violation is generated on an entry of an array or ArrayAccess object, the property path is

[indexName];
• You can construct nested property paths by concatenating them, separating properties by dots. For

example: addresses[work].matchingCityAndZipCode;
• The right side contains simply the names of fields in the form.

By default, errors for any property that is not mapped will bubble up to the parent form. You can use
the dot (.) on the left side to map errors of all unmapped properties to a particular field. For instance, to
map all these errors to the city field, use:

1
2
3
4
5

$resolver->setDefaults(array(
'error_mapping' => array(

'.' => 'city',
),

));

label

type: string default: The label is "guessed" from the field name

Sets the label that will be used when rendering the field. Setting to false will suppress the label. The label
can also be directly set inside the template:

1 {{ form_label(form.name, 'Your name') }}

PDF brought to you by

generated on May 24, 2018

Chapter 22: TelType Field | 130

http://sensiolabs.com

Listing 22-6

Listing 22-7

label_attr

type: array default: array()

Sets the HTML attributes for the <label> element, which will be used when rendering the label for the
field. It's an associative array with HTML attribute as a key. This attributes can also be directly set inside
the template:

1
2
3

{{ form_label(form.name, 'Your name', {
'label_attr': {'class': 'CUSTOM_LABEL_CLASS'}

}) }}

label_format

type: string default: null

Configures the string used as the label of the field, in case the label option was not set. This is useful
when using keyword translation messages.

If you're using keyword translation messages as labels, you often end up having multiple keyword
messages for the same label (e.g. profile_address_street, invoice_address_street). This is
because the label is build for each "path" to a field. To avoid duplicated keyword messages, you can
configure the label format to a static value, like:

1
2
3
4
5
6
7
8

// ...
$profileFormBuilder->add('address', AddressType::class, array(

'label_format' => 'form.address.%name%',
));

$invoiceFormBuilder->add('invoice', AddressType::class, array(
'label_format' => 'form.address.%name%',

));

This option is inherited by the child types. With the code above, the label of the street field of both
forms will use the form.address.street keyword message.

Two variables are available in the label format:
%id%%id%

A unique identifier for the field, consisting of the complete path to the field and the field name (e.g.
profile_address_street);

%name%%name%

The field name (e.g. street).

The default value (null) results in a "humanized" version of the field name.

The label_format option is evaluated in the form theme. Make sure to update your templates in
case you customized form theming.

mapped

type: boolean default: true

If you wish the field to be ignored when reading or writing to the object, you can set the mapped option
to false.

PDF brought to you by

generated on May 24, 2018

Chapter 22: TelType Field | 131

http://sensiolabs.com

required

type: boolean default: true

If true, an HTML5 required attribute2 will be rendered. The corresponding label will also render with a
required class.

This is superficial and independent from validation. At best, if you let Symfony guess your field type, then
the value of this option will be guessed from your validation information.

The required option also affects how empty data for each field is handled. For more details, see the
empty_data option.

trim

type: boolean default: true

If true, the whitespace of the submitted string value will be stripped via the trim3 function when the data
is bound. This guarantees that if a value is submitted with extra whitespace, it will be removed before the
value is merged back onto the underlying object.

2. http://diveintohtml5.info/forms.html

3. https://secure.php.net/manual/en/function.trim.php

PDF brought to you by

generated on May 24, 2018

Chapter 22: TelType Field | 132

http://sensiolabs.com

Chapter 23

ColorType Field

The ColorType field is a text field that is rendered using the HTML5 <input type="color"> tag.
Depending on each browser, the behavior of this form field can vary substantially. Some browsers display
it as a simple text field, while others display a native color picker.

The value of the underlying <input type="color"> field is always a 7-character string specifying
an RGB color in lower case hexadecimal notation. That's why it's not possible to select semi-transparent
colors with this element.

Rendered as input color field (a text box)

Inherited
options • data

• disabled
• empty_data
• error_bubbling
• error_mapping
• label
• label_attr
• label_format
• mapped
• required
• trim

Parent type TextType

Class ColorType1

Inherited Options
These options inherit from the FormType:

1. https://api.symfony.com/4.0/Symfony/Component/Form/Extension/Core/Type/ColorType.html

PDF brought to you by

generated on May 24, 2018

Chapter 23: ColorType Field | 133

http://sensiolabs.com

Listing 23-1

Listing 23-2

data

type: mixed default: Defaults to field of the underlying structure.

When you create a form, each field initially displays the value of the corresponding property of the form's
domain data (e.g. if you bind an object to the form). If you want to override this initial value for the form
or an individual field, you can set it in the data option:

1
2
3
4
5
6

use Symfony\Component\Form\Extension\Core\Type\HiddenType;
// ...

$builder->add('token', HiddenType::class, array(
'data' => 'abcdef',

));

The data option always overrides the value taken from the domain data (object) when rendering.
This means the object value is also overriden when the form edits an already persisted object, causing
it to lose its persisted value when the form is submitted.

disabled

type: boolean default: false

If you don't want a user to modify the value of a field, you can set the disabled option to true. Any
submitted value will be ignored.

empty_data

type: mixed

The default value is '' (the empty string).

This option determines what value the field will return when the submitted value is empty (or missing).
It does not set an initial value if none is provided when the form is rendered in a view.

This means it helps you handling form submission with blank fields. For example, if you want the name
field to be explicitly set to John Doe when no value is selected, you can do it like this:

$builder->add('name', null, array(
'required' => false,
'empty_data' => 'John Doe',

));

This will still render an empty text box, but upon submission the John Doe value will be set. Use the
data or placeholder options to show this initial value in the rendered form.

If a form is compound, you can set empty_data as an array, object or closure. See the How to Configure
empty Data for a Form Class article for more details about these options.

If you want to set the empty_data option for your entire form class, see the How to Configure empty
Data for a Form Class article.

Form data transformers will still be applied to the empty_data value. This means that an empty
string will be cast to null. Use a custom data transformer if you explicitly want to return the empty
string.

PDF brought to you by

generated on May 24, 2018

Chapter 23: ColorType Field | 134

http://sensiolabs.com

Listing 23-3

Listing 23-4

Listing 23-5

error_bubbling

type: boolean default: false unless the form is compound

If true, any errors for this field will be passed to the parent field or form. For example, if set to true on
a normal field, any errors for that field will be attached to the main form, not to the specific field.

error_mapping

type: array default: array()

This option allows you to modify the target of a validation error.

Imagine you have a custom method named matchingCityAndZipCode() that validates whether the
city and zip code match. Unfortunately, there is no "matchingCityAndZipCode" field in your form, so all
that Symfony can do is display the error on top of the form.

With customized error mapping, you can do better: map the error to the city field so that it displays above
it:

1
2
3
4
5
6
7
8

public function configureOptions(OptionsResolver $resolver)
{

$resolver->setDefaults(array(
'error_mapping' => array(

'matchingCityAndZipCode' => 'city',
),

));
}

Here are the rules for the left and the right side of the mapping:

• The left side contains property paths;
• If the violation is generated on a property or method of a class, its path is simply propertyName;
• If the violation is generated on an entry of an array or ArrayAccess object, the property path is

[indexName];
• You can construct nested property paths by concatenating them, separating properties by dots. For

example: addresses[work].matchingCityAndZipCode;
• The right side contains simply the names of fields in the form.

By default, errors for any property that is not mapped will bubble up to the parent form. You can use
the dot (.) on the left side to map errors of all unmapped properties to a particular field. For instance, to
map all these errors to the city field, use:

1
2
3
4
5

$resolver->setDefaults(array(
'error_mapping' => array(

'.' => 'city',
),

));

label

type: string default: The label is "guessed" from the field name

Sets the label that will be used when rendering the field. Setting to false will suppress the label. The label
can also be directly set inside the template:

1 {{ form_label(form.name, 'Your name') }}

PDF brought to you by

generated on May 24, 2018

Chapter 23: ColorType Field | 135

http://sensiolabs.com

Listing 23-6

Listing 23-7

label_attr

type: array default: array()

Sets the HTML attributes for the <label> element, which will be used when rendering the label for the
field. It's an associative array with HTML attribute as a key. This attributes can also be directly set inside
the template:

1
2
3

{{ form_label(form.name, 'Your name', {
'label_attr': {'class': 'CUSTOM_LABEL_CLASS'}

}) }}

label_format

type: string default: null

Configures the string used as the label of the field, in case the label option was not set. This is useful
when using keyword translation messages.

If you're using keyword translation messages as labels, you often end up having multiple keyword
messages for the same label (e.g. profile_address_street, invoice_address_street). This is
because the label is build for each "path" to a field. To avoid duplicated keyword messages, you can
configure the label format to a static value, like:

1
2
3
4
5
6
7
8

// ...
$profileFormBuilder->add('address', AddressType::class, array(

'label_format' => 'form.address.%name%',
));

$invoiceFormBuilder->add('invoice', AddressType::class, array(
'label_format' => 'form.address.%name%',

));

This option is inherited by the child types. With the code above, the label of the street field of both
forms will use the form.address.street keyword message.

Two variables are available in the label format:
%id%%id%

A unique identifier for the field, consisting of the complete path to the field and the field name (e.g.
profile_address_street);

%name%%name%

The field name (e.g. street).

The default value (null) results in a "humanized" version of the field name.

The label_format option is evaluated in the form theme. Make sure to update your templates in
case you customized form theming.

mapped

type: boolean default: true

If you wish the field to be ignored when reading or writing to the object, you can set the mapped option
to false.

PDF brought to you by

generated on May 24, 2018

Chapter 23: ColorType Field | 136

http://sensiolabs.com

required

type: boolean default: true

If true, an HTML5 required attribute2 will be rendered. The corresponding label will also render with a
required class.

This is superficial and independent from validation. At best, if you let Symfony guess your field type, then
the value of this option will be guessed from your validation information.

The required option also affects how empty data for each field is handled. For more details, see the
empty_data option.

trim

type: boolean default: true

If true, the whitespace of the submitted string value will be stripped via the trim3 function when the data
is bound. This guarantees that if a value is submitted with extra whitespace, it will be removed before the
value is merged back onto the underlying object.

2. http://diveintohtml5.info/forms.html

3. https://secure.php.net/manual/en/function.trim.php

PDF brought to you by

generated on May 24, 2018

Chapter 23: ColorType Field | 137

http://sensiolabs.com

Chapter 24

ChoiceType Field (select drop-downs, radio
buttons & checkboxes)

A multi-purpose field used to allow the user to "choose" one or more options. It can be rendered as a
select tag, radio buttons, or checkboxes.

To use this field, you must specify either choices or choice_loader option.

Rendered as can be various tags (see below)

Options
• choices
• choice_attr
• choice_label
• choice_loader
• choice_name
• choice_translation_domain
• choice_value
• expanded
• group_by
• multiple
• placeholder
• preferred_choices

Overridden
options • compound

• empty_data
• error_bubbling
• trim

Inherited
options • attr

• by_reference
• data

PDF brought to you by

generated on May 24, 2018

Chapter 24: ChoiceType Field (select drop-downs, radio buttons & checkboxes) | 138

http://sensiolabs.com

Listing 24-1

Listing 24-2

• disabled
• error_mapping
• inherit_data
• label
• label_attr
• label_format
• mapped
• required
• translation_domain

Parent type FormType

Class ChoiceType1

Example Usage

The easiest way to use this field is to specify the choices directly via the choices option:

1
2
3
4
5
6
7
8
9
10

use Symfony\Component\Form\Extension\Core\Type\ChoiceType;
// ...

$builder->add('isAttending', ChoiceType::class, array(
'choices' => array(

'Maybe' => null,
'Yes' => true,
'No' => false,

),
));

This will create a select drop-down like this:

If the user selects No, the form will return false for this field. Similarly, if the starting data for this field
is true, then Yes will be auto-selected. In other words, the value of each item is the value you want to
get/set in PHP code, while the key is what will be shown to the user.

Advanced Example (with Objects!)
This field has a lot of options and most control how the field is displayed. In this example, the underlying
data is some Category object that has a getName() method:

1
2
3
4
5
6
7

use App\Entity\Category;
use Symfony\Component\Form\Extension\Core\Type\ChoiceType;
// ...

$builder->add('category', ChoiceType::class, [
'choices' => [

new Category('Cat1'),

1. https://api.symfony.com/4.0/Symfony/Component/Form/Extension/Core/Type/ChoiceType.html

PDF brought to you by

generated on May 24, 2018

Chapter 24: ChoiceType Field (select drop-downs, radio buttons & checkboxes) | 139

http://sensiolabs.com

Listing 24-3

8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

new Category('Cat2'),
new Category('Cat3'),
new Category('Cat4'),

],
'choice_label' => function($category, $key, $index) {

/** @var Category $category */
return strtoupper($category->getName());

},
'choice_attr' => function($category, $key, $index) {

return ['class' => 'category_'.strtolower($category->getName())];
},

'group_by' => function($category, $key, $index) {
// randomly assign things into 2 groups
return rand(0, 1) == 1 ? 'Group A' : 'Group B';

},
'preferred_choices' => function($category, $key, $index) {

return $category->getName() == 'Cat2' || $category->getName() == 'Cat3';
},

]);

You can also customize the choice_name and choice_value of each choice if you need further HTML
customization.

Select Tag, Checkboxes or Radio Buttons

This field may be rendered as one of several different HTML fields, depending on the expanded and
multiple options:

Element Type Expanded Multiple

select tag false false

select tag (with multiple attribute) false true

radio buttons true false

checkboxes true true

Customizing each Option's Text (Label)

Normally, the array key of each item in the choices option is used as the text that's shown to the user.
But that can be completely customized via the choice_label option. Check it out for more details.

Grouping Options
You can easily "group" options in a select by passing a multi-dimensional choices array:

1
2
3
4
5
6
7
8
9
10

use Symfony\Component\Form\Extension\Core\Type\ChoiceType;
// ...

$builder->add('stockStatus', ChoiceType::class, array(
'choices' => array(

'Main Statuses' => array(
'Yes' => 'stock_yes',
'No' => 'stock_no',

),
'Out of Stock Statuses' => array(

PDF brought to you by

generated on May 24, 2018

Chapter 24: ChoiceType Field (select drop-downs, radio buttons & checkboxes) | 140

http://sensiolabs.com

Listing 24-4

Listing 24-5

11
12
13
14
15

'Backordered' => 'stock_backordered',
'Discontinued' => 'stock_discontinued',

),
),

));

To get fancier, use the group_by option.

Field Options

choices

type: array default: array()

This is the most basic way to specify the choices that should be used by this field. The choices option
is an array, where the array key is the item's label and the array value is the item's value:

1
2
3
4
5
6

use Symfony\Component\Form\Extension\Core\Type\ChoiceType;
// ...

$builder->add('inStock', ChoiceType::class, array(
'choices' => array('In Stock' => true, 'Out of Stock' => false),

));

choice_attr

type: array, callable or string default: array()

Use this to add additional HTML attributes to each choice. This can be an array of attributes (if they are
the same for each choice), a callable or a property path (just like choice_label).

If an array, the keys of the choices array must be used as keys:

1
2
3
4
5
6
7
8
9
10
11
12
13
14

use Symfony\Component\Form\Extension\Core\Type\ChoiceType;
// ...

$builder->add('attending', ChoiceType::class, array(
'choices' => array(

'Yes' => true,
'No' => false,
'Maybe' => null,

),
'choice_attr' => function($val, $key, $index) {

// adds a class like attending_yes, attending_no, etc
return ['class' => 'attending_'.strtolower($key)];

},
));

PDF brought to you by

generated on May 24, 2018

Chapter 24: ChoiceType Field (select drop-downs, radio buttons & checkboxes) | 141

http://sensiolabs.com

Listing 24-6

Listing 24-7

choice_label

type: string, callable or false default: null

Normally, the array key of each item in the choices option is used as the text that's shown to the user.
The choice_label option allows you to take more control:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

use Symfony\Component\Form\Extension\Core\Type\ChoiceType;
// ...

$builder->add('attending', ChoiceType::class, array(
'choices' => array(

'yes' => true,
'no' => false,
'maybe' => null,

),
'choice_label' => function ($value, $key, $index) {

if ($value == true) {
return 'Definitely!';

}
return strtoupper($key);

// or if you want to translate some key
//return 'form.choice.'.$key;

},
));

This method is called for each choice, passing you the choice $value and the $key from the choices
array ($index is related to choice_value). This will give you:

If your choice values are objects, then choice_label can also be a property path. Imagine you have
some Status class with a getDisplayName() method:

1
2
3
4
5
6
7
8
9
10
11

use Symfony\Component\Form\Extension\Core\Type\ChoiceType;
// ...

$builder->add('attending', ChoiceType::class, array(
'choices' => array(

new Status(Status::YES),
new Status(Status::NO),
new Status(Status::MAYBE),

),
'choice_label' => 'displayName',

));

If set to false, all the tag labels will be discarded for radio or checkbox inputs. You can also return
false from the callable to discard certain labels.

choice_loader

type: ChoiceLoaderInterface2

The choice_loader can be used to only partially load the choices in cases where a fully-loaded list is
not necessary. This is only needed in advanced cases and would replace the choices option.

2. https://api.symfony.com/4.0/Symfony/Component/Form/ChoiceList/Loader/ChoiceLoaderInterface.html

PDF brought to you by

generated on May 24, 2018

Chapter 24: ChoiceType Field (select drop-downs, radio buttons & checkboxes) | 142

http://sensiolabs.com

Listing 24-8

Listing 24-9

You can use an instance of CallbackChoiceLoader3 if you want to take advantage of lazy loading:

1
2
3
4
5
6
7
8
9

use Symfony\Component\Form\ChoiceList\Loader\CallbackChoiceLoader;
use Symfony\Component\Form\Extension\Core\Type\ChoiceType;
// ...

$builder->add('constants', ChoiceType::class, array(
'choice_loader' => new CallbackChoiceLoader(function() {

return StaticClass::getConstants();
}),

));

This will cause the call of StaticClass::getConstants() to not happen if the request is redirected
and if there is no pre set or submitted data. Otherwise the choice options would need to be resolved thus
triggering the callback.

choice_name

type: callable or string default: null

Controls the internal field name of the choice. You normally don't care about this, but in some advanced
cases, you might. For example, this "name" becomes the index of the choice views in the template.

This can be a callable or a property path. See choice_label for similar usage. If null is used, an
incrementing integer is used as the name.

choice_translation_domain

type: string, boolean or null

This option determines if the choice values should be translated and in which translation domain.

The values of the choice_translation_domain option can be true (reuse the current translation
domain), false (disable translation), null (uses the parent translation domain or the default domain)
or a string which represents the exact translation domain to use.

choice_value

type: callable or string default: null

Returns the string "value" for each choice, which must be unique across all choices. This is used in the
value attribute in HTML and submitted in the POST/PUT requests. You don't normally need to worry
about this, but it might be handy when processing an API request (since you can configure the value that
will be sent in the API request).

This can be a callable or a property path. If null is given, an incrementing integer is used as the value.

If you pass a callable, it will receive one argument: the choice itself. When using the EntityType Field, the
argument will be the entity object for each choice or null in some cases, which you need to handle:

'choice_value' => function (MyOptionEntity $entity = null) {
return $entity ? $entity->getId() : '';

},

expanded

type: boolean default: false

3. https://api.symfony.com/4.0/Symfony/Component/Form/ChoiceList/Loader/CallbackChoiceLoader.html

PDF brought to you by

generated on May 24, 2018

Chapter 24: ChoiceType Field (select drop-downs, radio buttons & checkboxes) | 143

http://sensiolabs.com

Listing 24-10

If set to true, radio buttons or checkboxes will be rendered (depending on the multiple value). If false,
a select element will be rendered.

group_by

type: array, callable or string default: null

You can easily "group" options in a select simply by passing a multi-dimensional array to choices. See
the Grouping Options section about that.

The group_by option is an alternative way to group choices, which gives you a bit more flexibility.

Take the following example:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

use Symfony\Component\Form\Extension\Core\Type\ChoiceType;
// ...

$builder->add('publishAt', ChoiceType::class, array(
'choices' => array(

'now' => new \DateTime('now'),
'tomorrow' => new \DateTime('+1 day'),
'1 week' => new \DateTime('+1 week'),
'1 month' => new \DateTime('+1 month'),

),
'group_by' => function($value, $key, $index) {

if ($value <= new \DateTime('+3 days')) {
return 'Soon';

} else {
return 'Later';

}
},

));

This groups the dates that are within 3 days into "Soon" and everything else into a "Later" group:

If you return null, the option won't be grouped. You can also pass a string "property path" that will be
called to get the group. See the choice_label for details about using a property path.

multiple

type: boolean default: false

If true, the user will be able to select multiple options (as opposed to choosing just one option).
Depending on the value of the expanded option, this will render either a select tag or checkboxes if true
and a select tag or radio buttons if false. The returned value will be an array.

placeholder

type: string or boolean

This option determines whether or not a special "empty" option (e.g. "Choose an option") will appear at
the top of a select widget. This option only applies if the multiple option is set to false.

PDF brought to you by

generated on May 24, 2018

Chapter 24: ChoiceType Field (select drop-downs, radio buttons & checkboxes) | 144

http://sensiolabs.com

Listing 24-11

Listing 24-12

Listing 24-13

Listing 24-14

Listing 24-15

• Add an empty value with "Choose an option" as the text:

1
2
3
4
5
6

use Symfony\Component\Form\Extension\Core\Type\ChoiceType;
// ...

$builder->add('states', ChoiceType::class, array(
'placeholder' => 'Choose an option',

));

• Guarantee that no "empty" value option is displayed:

1
2
3
4
5
6

use Symfony\Component\Form\Extension\Core\Type\ChoiceType;
// ...

$builder->add('states', ChoiceType::class, array(
'placeholder' => false,

));

If you leave the placeholder option unset, then a blank (with no text) option will automatically be
added if and only if the required option is false:

1
2
3
4
5
6
7

use Symfony\Component\Form\Extension\Core\Type\ChoiceType;
// ...

// a blank (with no text) option will be added
$builder->add('states', ChoiceType::class, array(

'required' => false,
));

preferred_choices

type: array, callable or string default: array()

This option allows you to move certain choices to the top of your list with a visual separator between
them and the rest of the options. If you have a form of languages, you can list the most popular on top,
like Bork Bork and Pirate:

1
2
3
4
5
6
7
8
9
10
11
12

use Symfony\Component\Form\Extension\Core\Type\ChoiceType;
// ...

$builder->add('language', ChoiceType::class, array(
'choices' => array(

'English' => 'en',
'Spanish' => 'es',
'Bork' => 'muppets',
'Pirate' => 'arr',

),
'preferred_choices' => array('muppets', 'arr'),

));

This options can also be a callback function to give you more flexibility. This might be especially useful
if your values are objects:

1
2
3
4
5
6
7
8
9
10
11

use Symfony\Component\Form\Extension\Core\Type\ChoiceType;
// ...

$builder->add('publishAt', ChoiceType::class, array(
'choices' => array(

'now' => new \DateTime('now'),
'tomorrow' => new \DateTime('+1 day'),
'1 week' => new \DateTime('+1 week'),
'1 month' => new \DateTime('+1 month'),

),
'preferred_choices' => function ($value, $key) {

PDF brought to you by

generated on May 24, 2018

Chapter 24: ChoiceType Field (select drop-downs, radio buttons & checkboxes) | 145

http://sensiolabs.com

Listing 24-16

Listing 24-17

12
13
14
15

// prefer options within 3 days
return $value <= new \DateTime('+3 days');

},
));

This will "prefer" the "now" and "tomorrow" choices only:

Finally, if your values are objects, you can also specify a property path string on the object that will return
true or false.

The preferred choices are only meaningful when rendering a select element (i.e. expanded false). The
preferred choices and normal choices are separated visually by a set of dotted lines (i.e. ------------
-------). This can be customized when rendering the field:

1 {{ form_widget(form.publishAt, { 'separator': '=====' }) }}

Overridden Options

compound

type: boolean default: same value as expanded option

This option specifies if a form is compound. The value is by default overridden by the value of the
expanded option.

empty_data

type: mixed

The actual default value of this option depends on other field options:

• If multiple is false and expanded is false, then '' (empty string);
• Otherwise array() (empty array).

This option determines what value the field will return when the submitted value is empty (or missing).
It does not set an initial value if none is provided when the form is rendered in a view.

This means it helps you handling form submission with blank fields. For example, if you want the name
field to be explicitly set to John Doe when no value is selected, you can do it like this:

$builder->add('name', null, array(
'required' => false,
'empty_data' => 'John Doe',

));

This will still render an empty text box, but upon submission the John Doe value will be set. Use the
data or placeholder options to show this initial value in the rendered form.

PDF brought to you by

generated on May 24, 2018

Chapter 24: ChoiceType Field (select drop-downs, radio buttons & checkboxes) | 146

http://sensiolabs.com

Listing 24-18

Listing 24-19

If a form is compound, you can set empty_data as an array, object or closure. See the How to Configure
empty Data for a Form Class article for more details about these options.

If you want to set the empty_data option for your entire form class, see the How to Configure empty
Data for a Form Class article.

Form data transformers will still be applied to the empty_data value. This means that an empty
string will be cast to null. Use a custom data transformer if you explicitly want to return the empty
string.

error_bubbling

type: boolean default: false

Set that error on this field must be attached to the field instead of the parent field (the form in most cases).

trim

type: boolean default: false

Trimming is disabled by default because the selected value or values must match the given choice values
exactly (and they could contain whitespaces).

Inherited Options
These options inherit from the FormType:

attr

type: array default: array()

If you want to add extra attributes to an HTML field representation you can use the attr option. It's an
associative array with HTML attributes as keys. This can be useful when you need to set a custom class
for some widget:

$builder->add('body', TextareaType::class, array(
'attr' => array('class' => 'tinymce'),

));

by_reference

type: boolean default: true

In most cases, if you have an author field, then you expect setAuthor() to be called on the underlying
object. In some cases, however, setAuthor() may not be called. Setting by_reference to false
ensures that the setter is called in all cases.

To explain this further, here's a simple example:

1
2
3
4
5
6

use Symfony\Component\Form\Extension\Core\Type\TextType;
use Symfony\Component\Form\Extension\Core\Type\EmailType;
use Symfony\Component\Form\Extension\Core\Type\FormType;
// ...

$builder = $this->createFormBuilder($article);

PDF brought to you by

generated on May 24, 2018

Chapter 24: ChoiceType Field (select drop-downs, radio buttons & checkboxes) | 147

http://sensiolabs.com

Listing 24-20

Listing 24-21

Listing 24-22

7
8
9
10
11
12
13

$builder
->add('title', TextType::class)
->add(

$builder->create('author', FormType::class, array('by_reference' => ?))
->add('name', TextType::class)
->add('email', EmailType::class)

)

If by_reference is true, the following takes place behind the scenes when you call submit() (or
handleRequest()) on the form:

$article->setTitle('...');
$article->getAuthor()->setName('...');
$article->getAuthor()->setEmail('...');

Notice that setAuthor() is not called. The author is modified by reference.

If you set by_reference to false, submitting looks like this:

1
2
3
4
5

$article->setTitle('...');
$author = clone $article->getAuthor();
$author->setName('...');
$author->setEmail('...');
$article->setAuthor($author);

So, all that by_reference=false really does is force the framework to call the setter on the parent
object.

Similarly, if you're using the CollectionType field where your underlying collection data is an object (like
with Doctrine's ArrayCollection), then by_reference must be set to false if you need the adder
and remover (e.g. addAuthor() and removeAuthor()) to be called.

data

type: mixed default: Defaults to field of the underlying structure.

When you create a form, each field initially displays the value of the corresponding property of the form's
domain data (e.g. if you bind an object to the form). If you want to override this initial value for the form
or an individual field, you can set it in the data option:

1
2
3
4
5
6

use Symfony\Component\Form\Extension\Core\Type\HiddenType;
// ...

$builder->add('token', HiddenType::class, array(
'data' => 'abcdef',

));

The data option always overrides the value taken from the domain data (object) when rendering.
This means the object value is also overriden when the form edits an already persisted object, causing
it to lose its persisted value when the form is submitted.

disabled

type: boolean default: false

If you don't want a user to modify the value of a field, you can set the disabled option to true. Any
submitted value will be ignored.

PDF brought to you by

generated on May 24, 2018

Chapter 24: ChoiceType Field (select drop-downs, radio buttons & checkboxes) | 148

http://sensiolabs.com

Listing 24-23

Listing 24-24

error_mapping

type: array default: array()

This option allows you to modify the target of a validation error.

Imagine you have a custom method named matchingCityAndZipCode() that validates whether the
city and zip code match. Unfortunately, there is no "matchingCityAndZipCode" field in your form, so all
that Symfony can do is display the error on top of the form.

With customized error mapping, you can do better: map the error to the city field so that it displays above
it:

1
2
3
4
5
6
7
8

public function configureOptions(OptionsResolver $resolver)
{

$resolver->setDefaults(array(
'error_mapping' => array(

'matchingCityAndZipCode' => 'city',
),

));
}

Here are the rules for the left and the right side of the mapping:

• The left side contains property paths;
• If the violation is generated on a property or method of a class, its path is simply propertyName;
• If the violation is generated on an entry of an array or ArrayAccess object, the property path is

[indexName];
• You can construct nested property paths by concatenating them, separating properties by dots. For

example: addresses[work].matchingCityAndZipCode;
• The right side contains simply the names of fields in the form.

By default, errors for any property that is not mapped will bubble up to the parent form. You can use
the dot (.) on the left side to map errors of all unmapped properties to a particular field. For instance, to
map all these errors to the city field, use:

1
2
3
4
5

$resolver->setDefaults(array(
'error_mapping' => array(

'.' => 'city',
),

));

inherit_data

type: boolean default: false

This option determines if the form will inherit data from its parent form. This can be useful if you
have a set of fields that are duplicated across multiple forms. See How to Reduce Code Duplication with
"inherit_data".

When a field has the inherit_data option set, it uses the data of the parent form as is. This means
that Data Transformers won't be applied to that field.

label

type: string default: The label is "guessed" from the field name

Sets the label that will be used when rendering the field. Setting to false will suppress the label. The label
can also be directly set inside the template:

PDF brought to you by

generated on May 24, 2018

Chapter 24: ChoiceType Field (select drop-downs, radio buttons & checkboxes) | 149

http://sensiolabs.com

Listing 24-25

Listing 24-26

Listing 24-27

1 {{ form_label(form.name, 'Your name') }}

label_attr

type: array default: array()

Sets the HTML attributes for the <label> element, which will be used when rendering the label for the
field. It's an associative array with HTML attribute as a key. This attributes can also be directly set inside
the template:

1
2
3

{{ form_label(form.name, 'Your name', {
'label_attr': {'class': 'CUSTOM_LABEL_CLASS'}

}) }}

label_format

type: string default: null

Configures the string used as the label of the field, in case the label option was not set. This is useful
when using keyword translation messages.

If you're using keyword translation messages as labels, you often end up having multiple keyword
messages for the same label (e.g. profile_address_street, invoice_address_street). This is
because the label is build for each "path" to a field. To avoid duplicated keyword messages, you can
configure the label format to a static value, like:

1
2
3
4
5
6
7
8

// ...
$profileFormBuilder->add('address', AddressType::class, array(

'label_format' => 'form.address.%name%',
));

$invoiceFormBuilder->add('invoice', AddressType::class, array(
'label_format' => 'form.address.%name%',

));

This option is inherited by the child types. With the code above, the label of the street field of both
forms will use the form.address.street keyword message.

Two variables are available in the label format:
%id%%id%

A unique identifier for the field, consisting of the complete path to the field and the field name (e.g.
profile_address_street);

%name%%name%

The field name (e.g. street).

The default value (null) results in a "humanized" version of the field name.

The label_format option is evaluated in the form theme. Make sure to update your templates in
case you customized form theming.

mapped

type: boolean default: true

PDF brought to you by

generated on May 24, 2018

Chapter 24: ChoiceType Field (select drop-downs, radio buttons & checkboxes) | 150

http://sensiolabs.com

If you wish the field to be ignored when reading or writing to the object, you can set the mapped option
to false.

required

type: boolean default: true

If true, an HTML5 required attribute4 will be rendered. The corresponding label will also render with a
required class.

This is superficial and independent from validation. At best, if you let Symfony guess your field type, then
the value of this option will be guessed from your validation information.

The required option also affects how empty data for each field is handled. For more details, see the
empty_data option.

translation_domain

type: string default: messages

In case choice_translation_domain is set to true or null, this configures the exact translation domain
that will be used for any labels or options that are rendered for this field

Field Variables

Variable Type Usage

multiple boolean The value of the multiple option.

expanded boolean The value of the expanded option.

preferred_choices array A nested array containing the ChoiceView objects of choices
which should be presented to the user with priority.

choices array A nested array containing the ChoiceView objects of the
remaining choices.

separator string The separator to use between choice groups.

placeholder mixed The empty value if not already in the list, otherwise null.

choice_translation_domain mixed boolean, null or string to determine if the value should be
translated.

is_selected callable A callable which takes a ChoiceView and the selected value(s)
and returns whether the choice is in the selected value(s).

placeholder_in_choices boolean Whether the empty value is in the choice list.

It's significantly faster to use the selectedchoice(selected_value) test instead when using Twig.

4. http://diveintohtml5.info/forms.html

PDF brought to you by

generated on May 24, 2018

Chapter 24: ChoiceType Field (select drop-downs, radio buttons & checkboxes) | 151

http://sensiolabs.com

Chapter 25

EntityType Field

A special ChoiceType field that's designed to load options from a Doctrine entity. For example, if
you have a Category entity, you could use this field to display a select field of all, or some, of the
Category objects from the database.

Rendered as can be various tags (see Select Tag, Checkboxes or Radio Buttons)

Options
• choice_label
• class
• em
• query_builder

Overridden
options • choice_name

• choice_value
• choices
• data_class

Inherited
options

from the ChoiceType:

• choice_attr
• choice_translation_domain
• expanded
• group_by
• multiple
• placeholder
• preferred_choices
• translation_domain
• trim

from the FormType:

• data
• disabled

PDF brought to you by

generated on May 24, 2018

Chapter 25: EntityType Field | 152

http://sensiolabs.com

Listing 25-1

Listing 25-2

• empty_data
• error_bubbling
• error_mapping
• label
• label_attr
• label_format
• mapped
• required

Parent type ChoiceType

Class EntityType1

Basic Usage

The entity type has just one required option: the entity which should be listed inside the choice field:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

use App\Entity\User;
use Symfony\Bridge\Doctrine\Form\Type\EntityType;
// ...

$builder->add('users', EntityType::class, array(
// looks for choices from this entity
'class' => User::class,

// uses the User.username property as the visible option string
'choice_label' => 'username',

// used to render a select box, check boxes or radios
// 'multiple' => true,
// 'expanded' => true,

));

This will build a select drop-down containing all of the User objects in the database. To render radio
buttons or checkboxes instead, change the multiple and expanded options.

Using a Custom Query for the Entities

If you want to create a custom query to use when fetching the entities (e.g. you only want to return some
entities, or need to order them), use the query_builder option:

1
2
3
4
5
6
7
8
9
10
11
12
13

use App\Entity\User;
use Doctrine\ORM\EntityRepository;
use Symfony\Bridge\Doctrine\Form\Type\EntityType;
// ...

$builder->add('users', EntityType::class, array(
'class' => User::class,
'query_builder' => function (EntityRepository $er) {

return $er->createQueryBuilder('u')
->orderBy('u.username', 'ASC');

},
'choice_label' => 'username',

));

1. https://api.symfony.com/4.0/Symfony/Bridge/Doctrine/Form/Type/EntityType.html

PDF brought to you by

generated on May 24, 2018

Chapter 25: EntityType Field | 153

http://sensiolabs.com

Listing 25-3

Listing 25-4

Listing 25-5

Using Choices

If you already have the exact collection of entities that you want to include in the choice element, just
pass them via the choices key.

For example, if you have a $group variable (passed into your form perhaps as a form option) and
getUsers() returns a collection of User entities, then you can supply the choices option directly:

1
2
3
4
5
6
7
8

use App\Entity\User;
use Symfony\Bridge\Doctrine\Form\Type\EntityType;
// ...

$builder->add('users', EntityType::class, array(
'class' => User::class,
'choices' => $group->getUsers(),

));

Select Tag, Checkboxes or Radio Buttons

This field may be rendered as one of several different HTML fields, depending on the expanded and
multiple options:

Element Type Expanded Multiple

select tag false false

select tag (with multiple attribute) false true

radio buttons true false

checkboxes true true

Field Options

choice_label

type: string, callable or PropertyPath2

This is the property that should be used for displaying the entities as text in the HTML element:

1
2
3
4
5
6
7
8

use App\Entity\Category;
use Symfony\Bridge\Doctrine\Form\Type\EntityType;
// ...

$builder->add('category', EntityType::class, array(
'class' => Category::class,
'choice_label' => 'displayName',

));

If left blank, the entity object will be cast to a string and so must have a __toString() method. You
can also pass a callback function for more control:

1
2
3
4

use App\Entity\Category;
use Symfony\Bridge\Doctrine\Form\Type\EntityType;
// ...

2. https://api.symfony.com/4.0/Symfony/Component/PropertyAccess/PropertyPath.html

PDF brought to you by

generated on May 24, 2018

Chapter 25: EntityType Field | 154

http://sensiolabs.com

Listing 25-6

5
6
7
8
9
10

$builder->add('category', EntityType::class, array(
'class' => Category::class,
'choice_label' => function ($category) {

return $category->getDisplayName();
}

));

The method is called for each entity in the list and passed to the function. For more details, see the main
choice_label documentation.

When passing a string, the choice_label option is a property path. So you can use anything
supported by the PropertyAccessor component

For example, if the translations property is actually an associative array of objects, each with a name
property, then you could do this:

1
2
3
4
5
6
7

use Symfony\Bridge\Doctrine\Form\Type\EntityType;
// ...

$builder->add('genre', EntityType::class, array(
'class' => 'App\Entity\Genre',
'choice_label' => 'translations[en].name',

));

class

type: string required

The class of your entity (e.g. App:Category). This can be a fully-qualified class name (e.g.
App\Entity\Category) or the short alias name (as shown prior).

em

type: string | Doctrine\Common\Persistence\ObjectManager default: the default entity
manager

If specified, this entity manager will be used to load the choices instead of the default entity manager.

query_builder

type: Doctrine\ORM\QueryBuilder or a callable default: null

Allows you to create a custom query for your choices. See Using a Custom Query for the Entities for an
example.

The value of this option can either be a QueryBuilder object, a callable or null (which will load all
entities). When using a callable, you will be passed the EntityRepository of the entity as the only
argument and should return a QueryBuilder. Returning null in the Closure will result in loading all
entities.

The entity used in the FROM clause of the query_builder option will always be validated against the
class which you have specified with the form's class option. If you return another entity instead of
the one used in your FROM clause (for instance if you return an entity from a joined table), it will
break validation.

PDF brought to you by

generated on May 24, 2018

Chapter 25: EntityType Field | 155

http://sensiolabs.com

Listing 25-7

Overridden Options

choice_name

type: callable or string default: null

Controls the internal field name of the choice. You normally don't care about this, but in some advanced
cases, you might. For example, this "name" becomes the index of the choice views in the template.

This can be a callable or a property path. See choice_label for similar usage. If null is used, an
incrementing integer is used as the name.

In the EntityType, this defaults to the id of the entity, if it can be read. Otherwise, it falls back to using
auto-incrementing integers.

choice_value

type: callable or string default: null

Returns the string "value" for each choice, which must be unique across all choices. This is used in the
value attribute in HTML and submitted in the POST/PUT requests. You don't normally need to worry
about this, but it might be handy when processing an API request (since you can configure the value that
will be sent in the API request).

This can be a callable or a property path. If null is given, an incrementing integer is used as the value.

If you pass a callable, it will receive one argument: the choice itself. When using the EntityType Field, the
argument will be the entity object for each choice or null in some cases, which you need to handle:

'choice_value' => function (MyOptionEntity $entity = null) {
return $entity ? $entity->getId() : '';

},

In the EntityType, this is overridden to use the id by default. When the id is used, Doctrine only
queries for the objects for the ids that were actually submitted.

choices

type: array | \Traversable default: null

Instead of allowing the class and query_builder options to fetch the entities to include for you, you can
pass the choices option directly. See Using Choices.

data_class

type: string default: null

This option is not used in favor of the class option which is required to query the entities.

Inherited Options
These options inherit from the ChoiceType:

choice_attr

type: array, callable or string default: array()

PDF brought to you by

generated on May 24, 2018

Chapter 25: EntityType Field | 156

http://sensiolabs.com

Listing 25-8

Listing 25-9

Use this to add additional HTML attributes to each choice. This can be an array of attributes (if they are
the same for each choice), a callable or a property path (just like choice_label).

If an array, the keys of the choices array must be used as keys:

1
2
3
4
5
6
7
8
9
10
11
12
13
14

use Symfony\Component\Form\Extension\Core\Type\ChoiceType;
// ...

$builder->add('attending', ChoiceType::class, array(
'choices' => array(

'Yes' => true,
'No' => false,
'Maybe' => null,

),
'choice_attr' => function($val, $key, $index) {

// adds a class like attending_yes, attending_no, etc
return ['class' => 'attending_'.strtolower($key)];

},
));

choice_translation_domain

type: string, boolean or null

This option determines if the choice values should be translated and in which translation domain.

The values of the choice_translation_domain option can be true (reuse the current translation
domain), false (disable translation), null (uses the parent translation domain or the default domain)
or a string which represents the exact translation domain to use.

expanded

type: boolean default: false

If set to true, radio buttons or checkboxes will be rendered (depending on the multiple value). If false,
a select element will be rendered.

group_by

type: array, callable or string default: null

You can easily "group" options in a select simply by passing a multi-dimensional array to choices. See
the Grouping Options section about that.

The group_by option is an alternative way to group choices, which gives you a bit more flexibility.

Take the following example:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

use Symfony\Component\Form\Extension\Core\Type\ChoiceType;
// ...

$builder->add('publishAt', ChoiceType::class, array(
'choices' => array(

'now' => new \DateTime('now'),
'tomorrow' => new \DateTime('+1 day'),
'1 week' => new \DateTime('+1 week'),
'1 month' => new \DateTime('+1 month'),

),
'group_by' => function($value, $key, $index) {

if ($value <= new \DateTime('+3 days')) {
return 'Soon';

} else {
return 'Later';

}

PDF brought to you by

generated on May 24, 2018

Chapter 25: EntityType Field | 157

http://sensiolabs.com

Listing 25-10

Listing 25-11

Listing 25-12

17
18

},
));

This groups the dates that are within 3 days into "Soon" and everything else into a "Later" group:

If you return null, the option won't be grouped. You can also pass a string "property path" that will be
called to get the group. See the choice_label for details about using a property path.

multiple

type: boolean default: false

If true, the user will be able to select multiple options (as opposed to choosing just one option).
Depending on the value of the expanded option, this will render either a select tag or checkboxes if true
and a select tag or radio buttons if false. The returned value will be an array.

If you are working with a collection of Doctrine entities, it will be helpful to read the documentation
for the CollectionType Field as well. In addition, there is a complete example in the How to Embed a
Collection of Forms article.

placeholder

type: string or boolean

This option determines whether or not a special "empty" option (e.g. "Choose an option") will appear at
the top of a select widget. This option only applies if the multiple option is set to false.

• Add an empty value with "Choose an option" as the text:

1
2
3
4
5
6

use Symfony\Component\Form\Extension\Core\Type\ChoiceType;
// ...

$builder->add('states', ChoiceType::class, array(
'placeholder' => 'Choose an option',

));

• Guarantee that no "empty" value option is displayed:

1
2
3
4
5
6

use Symfony\Component\Form\Extension\Core\Type\ChoiceType;
// ...

$builder->add('states', ChoiceType::class, array(
'placeholder' => false,

));

If you leave the placeholder option unset, then a blank (with no text) option will automatically be
added if and only if the required option is false:

PDF brought to you by

generated on May 24, 2018

Chapter 25: EntityType Field | 158

http://sensiolabs.com

Listing 25-13

Listing 25-14

1
2
3
4
5
6
7

use Symfony\Component\Form\Extension\Core\Type\ChoiceType;
// ...

// a blank (with no text) option will be added
$builder->add('states', ChoiceType::class, array(

'required' => false,
));

preferred_choices

type: array, callable or string default: array()

This option allows you to move certain choices to the top of your list with a visual separator between
them and the rest of the options. If you have a form of languages, you can list the most popular on top,
like Bork Bork and Pirate:

1
2
3
4
5
6
7
8
9
10
11
12

use Symfony\Component\Form\Extension\Core\Type\ChoiceType;
// ...

$builder->add('language', ChoiceType::class, array(
'choices' => array(

'English' => 'en',
'Spanish' => 'es',
'Bork' => 'muppets',
'Pirate' => 'arr',

),
'preferred_choices' => array('muppets', 'arr'),

));

This options can also be a callback function to give you more flexibility. This might be especially useful
if your values are objects:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

use Symfony\Component\Form\Extension\Core\Type\ChoiceType;
// ...

$builder->add('publishAt', ChoiceType::class, array(
'choices' => array(

'now' => new \DateTime('now'),
'tomorrow' => new \DateTime('+1 day'),
'1 week' => new \DateTime('+1 week'),
'1 month' => new \DateTime('+1 month'),

),
'preferred_choices' => function ($value, $key) {

// prefer options within 3 days
return $value <= new \DateTime('+3 days');

},
));

This will "prefer" the "now" and "tomorrow" choices only:

Finally, if your values are objects, you can also specify a property path string on the object that will return
true or false.

PDF brought to you by

generated on May 24, 2018

Chapter 25: EntityType Field | 159

http://sensiolabs.com

Listing 25-15

Listing 25-16

The preferred choices are only meaningful when rendering a select element (i.e. expanded false). The
preferred choices and normal choices are separated visually by a set of dotted lines (i.e. ------------
-------). This can be customized when rendering the field:

1 {{ form_widget(form.publishAt, { 'separator': '=====' }) }}

This option expects an array of entity objects (that's actually the same as with the ChoiceType field,
which requires an array of the preferred "values").

translation_domain

type: string default: messages

In case choice_translation_domain is set to true or null, this configures the exact translation domain
that will be used for any labels or options that are rendered for this field

trim

type: boolean default: false

Trimming is disabled by default because the selected value or values must match the given choice values
exactly (and they could contain whitespaces).

These options inherit from the form type:

data

type: mixed default: Defaults to field of the underlying structure.

When you create a form, each field initially displays the value of the corresponding property of the form's
domain data (e.g. if you bind an object to the form). If you want to override this initial value for the form
or an individual field, you can set it in the data option:

1
2
3
4
5
6

use Symfony\Component\Form\Extension\Core\Type\HiddenType;
// ...

$builder->add('token', HiddenType::class, array(
'data' => 'abcdef',

));

The data option always overrides the value taken from the domain data (object) when rendering.
This means the object value is also overriden when the form edits an already persisted object, causing
it to lose its persisted value when the form is submitted.

disabled

type: boolean default: false

If you don't want a user to modify the value of a field, you can set the disabled option to true. Any
submitted value will be ignored.

empty_data

type: mixed

PDF brought to you by

generated on May 24, 2018

Chapter 25: EntityType Field | 160

http://sensiolabs.com

Listing 25-17

Listing 25-18

The actual default value of this option depends on other field options:

• If multiple is false and expanded is false, then '' (empty string);
• Otherwise array() (empty array).

This option determines what value the field will return when the submitted value is empty (or missing).
It does not set an initial value if none is provided when the form is rendered in a view.

This means it helps you handling form submission with blank fields. For example, if you want the name
field to be explicitly set to John Doe when no value is selected, you can do it like this:

$builder->add('name', null, array(
'required' => false,
'empty_data' => 'John Doe',

));

This will still render an empty text box, but upon submission the John Doe value will be set. Use the
data or placeholder options to show this initial value in the rendered form.

If a form is compound, you can set empty_data as an array, object or closure. See the How to Configure
empty Data for a Form Class article for more details about these options.

If you want to set the empty_data option for your entire form class, see the How to Configure empty
Data for a Form Class article.

Form data transformers will still be applied to the empty_data value. This means that an empty
string will be cast to null. Use a custom data transformer if you explicitly want to return the empty
string.

error_bubbling

type: boolean default: false unless the form is compound

If true, any errors for this field will be passed to the parent field or form. For example, if set to true on
a normal field, any errors for that field will be attached to the main form, not to the specific field.

error_mapping

type: array default: array()

This option allows you to modify the target of a validation error.

Imagine you have a custom method named matchingCityAndZipCode() that validates whether the
city and zip code match. Unfortunately, there is no "matchingCityAndZipCode" field in your form, so all
that Symfony can do is display the error on top of the form.

With customized error mapping, you can do better: map the error to the city field so that it displays above
it:

1
2
3
4
5
6
7
8

public function configureOptions(OptionsResolver $resolver)
{

$resolver->setDefaults(array(
'error_mapping' => array(

'matchingCityAndZipCode' => 'city',
),

));
}

Here are the rules for the left and the right side of the mapping:

PDF brought to you by

generated on May 24, 2018

Chapter 25: EntityType Field | 161

http://sensiolabs.com

Listing 25-19

Listing 25-20

Listing 25-21

Listing 25-22

• The left side contains property paths;
• If the violation is generated on a property or method of a class, its path is simply propertyName;
• If the violation is generated on an entry of an array or ArrayAccess object, the property path is

[indexName];
• You can construct nested property paths by concatenating them, separating properties by dots. For

example: addresses[work].matchingCityAndZipCode;
• The right side contains simply the names of fields in the form.

By default, errors for any property that is not mapped will bubble up to the parent form. You can use
the dot (.) on the left side to map errors of all unmapped properties to a particular field. For instance, to
map all these errors to the city field, use:

1
2
3
4
5

$resolver->setDefaults(array(
'error_mapping' => array(

'.' => 'city',
),

));

label

type: string default: The label is "guessed" from the field name

Sets the label that will be used when rendering the field. Setting to false will suppress the label. The label
can also be directly set inside the template:

1 {{ form_label(form.name, 'Your name') }}

label_attr

type: array default: array()

Sets the HTML attributes for the <label> element, which will be used when rendering the label for the
field. It's an associative array with HTML attribute as a key. This attributes can also be directly set inside
the template:

1
2
3

{{ form_label(form.name, 'Your name', {
'label_attr': {'class': 'CUSTOM_LABEL_CLASS'}

}) }}

label_format

type: string default: null

Configures the string used as the label of the field, in case the label option was not set. This is useful
when using keyword translation messages.

If you're using keyword translation messages as labels, you often end up having multiple keyword
messages for the same label (e.g. profile_address_street, invoice_address_street). This is
because the label is build for each "path" to a field. To avoid duplicated keyword messages, you can
configure the label format to a static value, like:

1
2
3
4
5
6

// ...
$profileFormBuilder->add('address', AddressType::class, array(

'label_format' => 'form.address.%name%',
));

$invoiceFormBuilder->add('invoice', AddressType::class, array(

PDF brought to you by

generated on May 24, 2018

Chapter 25: EntityType Field | 162

http://sensiolabs.com

7
8

'label_format' => 'form.address.%name%',
));

This option is inherited by the child types. With the code above, the label of the street field of both
forms will use the form.address.street keyword message.

Two variables are available in the label format:
%id%%id%

A unique identifier for the field, consisting of the complete path to the field and the field name (e.g.
profile_address_street);

%name%%name%

The field name (e.g. street).

The default value (null) results in a "humanized" version of the field name.

The label_format option is evaluated in the form theme. Make sure to update your templates in
case you customized form theming.

mapped

type: boolean default: true

If you wish the field to be ignored when reading or writing to the object, you can set the mapped option
to false.

required

type: boolean default: true

If true, an HTML5 required attribute3 will be rendered. The corresponding label will also render with a
required class.

This is superficial and independent from validation. At best, if you let Symfony guess your field type, then
the value of this option will be guessed from your validation information.

The required option also affects how empty data for each field is handled. For more details, see the
empty_data option.

3. http://diveintohtml5.info/forms.html

PDF brought to you by

generated on May 24, 2018

Chapter 25: EntityType Field | 163

http://sensiolabs.com

Chapter 26

CountryType Field

The CountryType is a subset of the ChoiceType that displays countries of the world. As an added
bonus, the country names are displayed in the language of the user.

The "value" for each country is the two-letter country code.

The locale of your user is guessed using Locale::getDefault()1

Unlike the ChoiceType, you don't need to specify a choices option as the field type automatically
uses all of the countries of the world. You can specify the option manually, but then you should just use
the ChoiceType directly.

Rendered as can be various tags (see Select Tag, Checkboxes or Radio Buttons)

Overridden
options • choices

Inherited
options

from the ChoiceType

• error_bubbling
• error_mapping
• expanded
• multiple
• placeholder
• preferred_choices
• trim

from the FormType

• data
• disabled

1. https://secure.php.net/manual/en/locale.getdefault.php

PDF brought to you by

generated on May 24, 2018

Chapter 26: CountryType Field | 164

http://sensiolabs.com

Listing 26-1

• empty_data
• label
• label_attr
• label_format
• mapped
• required

Parent type ChoiceType

Class CountryType2

Overridden Options

choices

default: Symfony\Component\Intl\Intl::getRegionBundle()->getCountryNames()

The country type defaults the choices option to the whole list of countries. The locale is used to
translate the countries names.

If you want to override the built-in choices of the country type, you will also have to set the
choice_loader option to null.

Inherited Options
These options inherit from the ChoiceType:

error_bubbling

type: boolean default: false unless the form is compound

If true, any errors for this field will be passed to the parent field or form. For example, if set to true on
a normal field, any errors for that field will be attached to the main form, not to the specific field.

error_mapping

type: array default: array()

This option allows you to modify the target of a validation error.

Imagine you have a custom method named matchingCityAndZipCode() that validates whether the
city and zip code match. Unfortunately, there is no "matchingCityAndZipCode" field in your form, so all
that Symfony can do is display the error on top of the form.

With customized error mapping, you can do better: map the error to the city field so that it displays above
it:

1
2
3

public function configureOptions(OptionsResolver $resolver)
{

$resolver->setDefaults(array(

2. https://api.symfony.com/4.0/Symfony/Component/Form/Extension/Core/Type/CountryType.html

PDF brought to you by

generated on May 24, 2018

Chapter 26: CountryType Field | 165

http://sensiolabs.com

Listing 26-2

Listing 26-3

4
5
6
7
8

'error_mapping' => array(
'matchingCityAndZipCode' => 'city',

),
));

}

Here are the rules for the left and the right side of the mapping:

• The left side contains property paths;
• If the violation is generated on a property or method of a class, its path is simply propertyName;
• If the violation is generated on an entry of an array or ArrayAccess object, the property path is

[indexName];
• You can construct nested property paths by concatenating them, separating properties by dots. For

example: addresses[work].matchingCityAndZipCode;
• The right side contains simply the names of fields in the form.

By default, errors for any property that is not mapped will bubble up to the parent form. You can use
the dot (.) on the left side to map errors of all unmapped properties to a particular field. For instance, to
map all these errors to the city field, use:

1
2
3
4
5

$resolver->setDefaults(array(
'error_mapping' => array(

'.' => 'city',
),

));

expanded

type: boolean default: false

If set to true, radio buttons or checkboxes will be rendered (depending on the multiple value). If false,
a select element will be rendered.

multiple

type: boolean default: false

If true, the user will be able to select multiple options (as opposed to choosing just one option).
Depending on the value of the expanded option, this will render either a select tag or checkboxes if true
and a select tag or radio buttons if false. The returned value will be an array.

placeholder

type: string or boolean

This option determines whether or not a special "empty" option (e.g. "Choose an option") will appear at
the top of a select widget. This option only applies if the multiple option is set to false.

• Add an empty value with "Choose an option" as the text:

1
2
3
4
5
6

use Symfony\Component\Form\Extension\Core\Type\ChoiceType;
// ...

$builder->add('states', ChoiceType::class, array(
'placeholder' => 'Choose an option',

));

• Guarantee that no "empty" value option is displayed:

PDF brought to you by

generated on May 24, 2018

Chapter 26: CountryType Field | 166

http://sensiolabs.com

Listing 26-4

Listing 26-5

Listing 26-6

Listing 26-7

1
2
3
4
5
6

use Symfony\Component\Form\Extension\Core\Type\ChoiceType;
// ...

$builder->add('states', ChoiceType::class, array(
'placeholder' => false,

));

If you leave the placeholder option unset, then a blank (with no text) option will automatically be
added if and only if the required option is false:

1
2
3
4
5
6
7

use Symfony\Component\Form\Extension\Core\Type\ChoiceType;
// ...

// a blank (with no text) option will be added
$builder->add('states', ChoiceType::class, array(

'required' => false,
));

preferred_choices

type: array, callable or string default: array()

This option allows you to move certain choices to the top of your list with a visual separator between
them and the rest of the options. If you have a form of languages, you can list the most popular on top,
like Bork Bork and Pirate:

1
2
3
4
5
6
7
8
9
10
11
12

use Symfony\Component\Form\Extension\Core\Type\ChoiceType;
// ...

$builder->add('language', ChoiceType::class, array(
'choices' => array(

'English' => 'en',
'Spanish' => 'es',
'Bork' => 'muppets',
'Pirate' => 'arr',

),
'preferred_choices' => array('muppets', 'arr'),

));

This options can also be a callback function to give you more flexibility. This might be especially useful
if your values are objects:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

use Symfony\Component\Form\Extension\Core\Type\ChoiceType;
// ...

$builder->add('publishAt', ChoiceType::class, array(
'choices' => array(

'now' => new \DateTime('now'),
'tomorrow' => new \DateTime('+1 day'),
'1 week' => new \DateTime('+1 week'),
'1 month' => new \DateTime('+1 month'),

),
'preferred_choices' => function ($value, $key) {

// prefer options within 3 days
return $value <= new \DateTime('+3 days');

},
));

This will "prefer" the "now" and "tomorrow" choices only:

PDF brought to you by

generated on May 24, 2018

Chapter 26: CountryType Field | 167

http://sensiolabs.com

Listing 26-8

Listing 26-9

Finally, if your values are objects, you can also specify a property path string on the object that will return
true or false.

The preferred choices are only meaningful when rendering a select element (i.e. expanded false). The
preferred choices and normal choices are separated visually by a set of dotted lines (i.e. ------------
-------). This can be customized when rendering the field:

1 {{ form_widget(form.publishAt, { 'separator': '=====' }) }}

trim

type: boolean default: false

Trimming is disabled by default because the selected value or values must match the given choice values
exactly (and they could contain whitespaces).

These options inherit from the FormType:

data

type: mixed default: Defaults to field of the underlying structure.

When you create a form, each field initially displays the value of the corresponding property of the form's
domain data (e.g. if you bind an object to the form). If you want to override this initial value for the form
or an individual field, you can set it in the data option:

1
2
3
4
5
6

use Symfony\Component\Form\Extension\Core\Type\HiddenType;
// ...

$builder->add('token', HiddenType::class, array(
'data' => 'abcdef',

));

The data option always overrides the value taken from the domain data (object) when rendering.
This means the object value is also overriden when the form edits an already persisted object, causing
it to lose its persisted value when the form is submitted.

disabled

type: boolean default: false

If you don't want a user to modify the value of a field, you can set the disabled option to true. Any
submitted value will be ignored.

empty_data

type: mixed

The actual default value of this option depends on other field options:

PDF brought to you by

generated on May 24, 2018

Chapter 26: CountryType Field | 168

http://sensiolabs.com

Listing 26-10

Listing 26-11

Listing 26-12

• If multiple is false and expanded is false, then '' (empty string);
• Otherwise array() (empty array).

This option determines what value the field will return when the submitted value is empty (or missing).
It does not set an initial value if none is provided when the form is rendered in a view.

This means it helps you handling form submission with blank fields. For example, if you want the name
field to be explicitly set to John Doe when no value is selected, you can do it like this:

$builder->add('name', null, array(
'required' => false,
'empty_data' => 'John Doe',

));

This will still render an empty text box, but upon submission the John Doe value will be set. Use the
data or placeholder options to show this initial value in the rendered form.

If a form is compound, you can set empty_data as an array, object or closure. See the How to Configure
empty Data for a Form Class article for more details about these options.

If you want to set the empty_data option for your entire form class, see the How to Configure empty
Data for a Form Class article.

Form data transformers will still be applied to the empty_data value. This means that an empty
string will be cast to null. Use a custom data transformer if you explicitly want to return the empty
string.

label

type: string default: The label is "guessed" from the field name

Sets the label that will be used when rendering the field. Setting to false will suppress the label. The label
can also be directly set inside the template:

1 {{ form_label(form.name, 'Your name') }}

label_attr

type: array default: array()

Sets the HTML attributes for the <label> element, which will be used when rendering the label for the
field. It's an associative array with HTML attribute as a key. This attributes can also be directly set inside
the template:

1
2
3

{{ form_label(form.name, 'Your name', {
'label_attr': {'class': 'CUSTOM_LABEL_CLASS'}

}) }}

label_format

type: string default: null

Configures the string used as the label of the field, in case the label option was not set. This is useful
when using keyword translation messages.

PDF brought to you by

generated on May 24, 2018

Chapter 26: CountryType Field | 169

http://sensiolabs.com

Listing 26-13

If you're using keyword translation messages as labels, you often end up having multiple keyword
messages for the same label (e.g. profile_address_street, invoice_address_street). This is
because the label is build for each "path" to a field. To avoid duplicated keyword messages, you can
configure the label format to a static value, like:

1
2
3
4
5
6
7
8

// ...
$profileFormBuilder->add('address', AddressType::class, array(

'label_format' => 'form.address.%name%',
));

$invoiceFormBuilder->add('invoice', AddressType::class, array(
'label_format' => 'form.address.%name%',

));

This option is inherited by the child types. With the code above, the label of the street field of both
forms will use the form.address.street keyword message.

Two variables are available in the label format:
%id%%id%

A unique identifier for the field, consisting of the complete path to the field and the field name (e.g.
profile_address_street);

%name%%name%

The field name (e.g. street).

The default value (null) results in a "humanized" version of the field name.

The label_format option is evaluated in the form theme. Make sure to update your templates in
case you customized form theming.

mapped

type: boolean default: true

If you wish the field to be ignored when reading or writing to the object, you can set the mapped option
to false.

required

type: boolean default: true

If true, an HTML5 required attribute3 will be rendered. The corresponding label will also render with a
required class.

This is superficial and independent from validation. At best, if you let Symfony guess your field type, then
the value of this option will be guessed from your validation information.

The required option also affects how empty data for each field is handled. For more details, see the
empty_data option.

3. http://diveintohtml5.info/forms.html

PDF brought to you by

generated on May 24, 2018

Chapter 26: CountryType Field | 170

http://sensiolabs.com

Chapter 27

LanguageType Field

The LanguageType is a subset of the ChoiceType that allows the user to select from a large list of
languages. As an added bonus, the language names are displayed in the language of the user.

The "value" for each language is the Unicode language identifier used in the International Components for
Unicode1 (e.g. fr or zh_Hant).

The locale of your user is guessed using Locale::getDefault()2, which requires the intl PHP
extension to be installed and enabled.

Unlike the ChoiceType, you don't need to specify a choices option as the field type automatically
uses a large list of languages. You can specify the option manually, but then you should just use the
ChoiceType directly.

Rendered as can be various tags (see Select Tag, Checkboxes or Radio Buttons)

Overridden
options • choices

Inherited
options

from the ChoiceType

• error_bubbling
• error_mapping
• expanded
• multiple
• placeholder
• preferred_choices
• trim

from the FormType

1. http://site.icu-project.org

2. https://secure.php.net/manual/en/locale.getdefault.php

PDF brought to you by

generated on May 24, 2018

Chapter 27: LanguageType Field | 171

http://sensiolabs.com

Listing 27-1

• data
• disabled
• empty_data
• label
• label_attr
• label_format
• mapped
• required

Parent type ChoiceType

Class LanguageType3

Overridden Options

choices

default: Symfony\Component\Intl\Intl::getLanguageBundle()->getLanguageNames().

The choices option defaults to all languages. The default locale is used to translate the languages names.

If you want to override the built-in choices of the language type, you will also have to set the
choice_loader option to null.

Inherited Options
These options inherit from the ChoiceType:

error_bubbling

type: boolean default: false unless the form is compound

If true, any errors for this field will be passed to the parent field or form. For example, if set to true on
a normal field, any errors for that field will be attached to the main form, not to the specific field.

error_mapping

type: array default: array()

This option allows you to modify the target of a validation error.

Imagine you have a custom method named matchingCityAndZipCode() that validates whether the
city and zip code match. Unfortunately, there is no "matchingCityAndZipCode" field in your form, so all
that Symfony can do is display the error on top of the form.

With customized error mapping, you can do better: map the error to the city field so that it displays above
it:

1
2

public function configureOptions(OptionsResolver $resolver)
{

3. https://api.symfony.com/4.0/Symfony/Component/Form/Extension/Core/Type/LanguageType.html

PDF brought to you by

generated on May 24, 2018

Chapter 27: LanguageType Field | 172

http://sensiolabs.com

Listing 27-2

Listing 27-3

3
4
5
6
7
8

$resolver->setDefaults(array(
'error_mapping' => array(

'matchingCityAndZipCode' => 'city',
),

));
}

Here are the rules for the left and the right side of the mapping:

• The left side contains property paths;
• If the violation is generated on a property or method of a class, its path is simply propertyName;
• If the violation is generated on an entry of an array or ArrayAccess object, the property path is

[indexName];
• You can construct nested property paths by concatenating them, separating properties by dots. For

example: addresses[work].matchingCityAndZipCode;
• The right side contains simply the names of fields in the form.

By default, errors for any property that is not mapped will bubble up to the parent form. You can use
the dot (.) on the left side to map errors of all unmapped properties to a particular field. For instance, to
map all these errors to the city field, use:

1
2
3
4
5

$resolver->setDefaults(array(
'error_mapping' => array(

'.' => 'city',
),

));

expanded

type: boolean default: false

If set to true, radio buttons or checkboxes will be rendered (depending on the multiple value). If false,
a select element will be rendered.

multiple

type: boolean default: false

If true, the user will be able to select multiple options (as opposed to choosing just one option).
Depending on the value of the expanded option, this will render either a select tag or checkboxes if true
and a select tag or radio buttons if false. The returned value will be an array.

placeholder

type: string or boolean

This option determines whether or not a special "empty" option (e.g. "Choose an option") will appear at
the top of a select widget. This option only applies if the multiple option is set to false.

• Add an empty value with "Choose an option" as the text:

1
2
3
4
5
6

use Symfony\Component\Form\Extension\Core\Type\ChoiceType;
// ...

$builder->add('states', ChoiceType::class, array(
'placeholder' => 'Choose an option',

));

• Guarantee that no "empty" value option is displayed:

PDF brought to you by

generated on May 24, 2018

Chapter 27: LanguageType Field | 173

http://sensiolabs.com

Listing 27-4

Listing 27-5

Listing 27-6

Listing 27-7

1
2
3
4
5
6

use Symfony\Component\Form\Extension\Core\Type\ChoiceType;
// ...

$builder->add('states', ChoiceType::class, array(
'placeholder' => false,

));

If you leave the placeholder option unset, then a blank (with no text) option will automatically be
added if and only if the required option is false:

1
2
3
4
5
6
7

use Symfony\Component\Form\Extension\Core\Type\ChoiceType;
// ...

// a blank (with no text) option will be added
$builder->add('states', ChoiceType::class, array(

'required' => false,
));

preferred_choices

type: array, callable or string default: array()

This option allows you to move certain choices to the top of your list with a visual separator between
them and the rest of the options. If you have a form of languages, you can list the most popular on top,
like Bork Bork and Pirate:

1
2
3
4
5
6
7
8
9
10
11
12

use Symfony\Component\Form\Extension\Core\Type\ChoiceType;
// ...

$builder->add('language', ChoiceType::class, array(
'choices' => array(

'English' => 'en',
'Spanish' => 'es',
'Bork' => 'muppets',
'Pirate' => 'arr',

),
'preferred_choices' => array('muppets', 'arr'),

));

This options can also be a callback function to give you more flexibility. This might be especially useful
if your values are objects:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

use Symfony\Component\Form\Extension\Core\Type\ChoiceType;
// ...

$builder->add('publishAt', ChoiceType::class, array(
'choices' => array(

'now' => new \DateTime('now'),
'tomorrow' => new \DateTime('+1 day'),
'1 week' => new \DateTime('+1 week'),
'1 month' => new \DateTime('+1 month'),

),
'preferred_choices' => function ($value, $key) {

// prefer options within 3 days
return $value <= new \DateTime('+3 days');

},
));

This will "prefer" the "now" and "tomorrow" choices only:

PDF brought to you by

generated on May 24, 2018

Chapter 27: LanguageType Field | 174

http://sensiolabs.com

Listing 27-8

Listing 27-9

Finally, if your values are objects, you can also specify a property path string on the object that will return
true or false.

The preferred choices are only meaningful when rendering a select element (i.e. expanded false). The
preferred choices and normal choices are separated visually by a set of dotted lines (i.e. ------------
-------). This can be customized when rendering the field:

1 {{ form_widget(form.publishAt, { 'separator': '=====' }) }}

trim

type: boolean default: false

Trimming is disabled by default because the selected value or values must match the given choice values
exactly (and they could contain whitespaces).

These options inherit from the FormType:

data

type: mixed default: Defaults to field of the underlying structure.

When you create a form, each field initially displays the value of the corresponding property of the form's
domain data (e.g. if you bind an object to the form). If you want to override this initial value for the form
or an individual field, you can set it in the data option:

1
2
3
4
5
6

use Symfony\Component\Form\Extension\Core\Type\HiddenType;
// ...

$builder->add('token', HiddenType::class, array(
'data' => 'abcdef',

));

The data option always overrides the value taken from the domain data (object) when rendering.
This means the object value is also overriden when the form edits an already persisted object, causing
it to lose its persisted value when the form is submitted.

disabled

type: boolean default: false

If you don't want a user to modify the value of a field, you can set the disabled option to true. Any
submitted value will be ignored.

empty_data

type: mixed

The actual default value of this option depends on other field options:

PDF brought to you by

generated on May 24, 2018

Chapter 27: LanguageType Field | 175

http://sensiolabs.com

Listing 27-10

Listing 27-11

Listing 27-12

• If multiple is false and expanded is false, then '' (empty string);
• Otherwise array() (empty array).

This option determines what value the field will return when the submitted value is empty (or missing).
It does not set an initial value if none is provided when the form is rendered in a view.

This means it helps you handling form submission with blank fields. For example, if you want the name
field to be explicitly set to John Doe when no value is selected, you can do it like this:

$builder->add('name', null, array(
'required' => false,
'empty_data' => 'John Doe',

));

This will still render an empty text box, but upon submission the John Doe value will be set. Use the
data or placeholder options to show this initial value in the rendered form.

If a form is compound, you can set empty_data as an array, object or closure. See the How to Configure
empty Data for a Form Class article for more details about these options.

If you want to set the empty_data option for your entire form class, see the How to Configure empty
Data for a Form Class article.

Form data transformers will still be applied to the empty_data value. This means that an empty
string will be cast to null. Use a custom data transformer if you explicitly want to return the empty
string.

label

type: string default: The label is "guessed" from the field name

Sets the label that will be used when rendering the field. Setting to false will suppress the label. The label
can also be directly set inside the template:

1 {{ form_label(form.name, 'Your name') }}

label_attr

type: array default: array()

Sets the HTML attributes for the <label> element, which will be used when rendering the label for the
field. It's an associative array with HTML attribute as a key. This attributes can also be directly set inside
the template:

1
2
3

{{ form_label(form.name, 'Your name', {
'label_attr': {'class': 'CUSTOM_LABEL_CLASS'}

}) }}

label_format

type: string default: null

Configures the string used as the label of the field, in case the label option was not set. This is useful
when using keyword translation messages.

PDF brought to you by

generated on May 24, 2018

Chapter 27: LanguageType Field | 176

http://sensiolabs.com

Listing 27-13

If you're using keyword translation messages as labels, you often end up having multiple keyword
messages for the same label (e.g. profile_address_street, invoice_address_street). This is
because the label is build for each "path" to a field. To avoid duplicated keyword messages, you can
configure the label format to a static value, like:

1
2
3
4
5
6
7
8

// ...
$profileFormBuilder->add('address', AddressType::class, array(

'label_format' => 'form.address.%name%',
));

$invoiceFormBuilder->add('invoice', AddressType::class, array(
'label_format' => 'form.address.%name%',

));

This option is inherited by the child types. With the code above, the label of the street field of both
forms will use the form.address.street keyword message.

Two variables are available in the label format:
%id%%id%

A unique identifier for the field, consisting of the complete path to the field and the field name (e.g.
profile_address_street);

%name%%name%

The field name (e.g. street).

The default value (null) results in a "humanized" version of the field name.

The label_format option is evaluated in the form theme. Make sure to update your templates in
case you customized form theming.

mapped

type: boolean default: true

If you wish the field to be ignored when reading or writing to the object, you can set the mapped option
to false.

required

type: boolean default: true

If true, an HTML5 required attribute4 will be rendered. The corresponding label will also render with a
required class.

This is superficial and independent from validation. At best, if you let Symfony guess your field type, then
the value of this option will be guessed from your validation information.

The required option also affects how empty data for each field is handled. For more details, see the
empty_data option.

4. http://diveintohtml5.info/forms.html

PDF brought to you by

generated on May 24, 2018

Chapter 27: LanguageType Field | 177

http://sensiolabs.com

Chapter 28

LocaleType Field

The LocaleType is a subset of the ChoiceType that allows the user to select from a large list of locales
(language+country). As an added bonus, the locale names are displayed in the language of the user.

The "value" for each locale is either the two letter ISO 639-11 language code (e.g. fr), or the language
code followed by an underscore (_), then the ISO 3166-1 alpha-22 country code (e.g. fr_FR for French/
France).

The locale of your user is guessed using Locale::getDefault()3

Unlike the ChoiceType, you don't need to specify a choices option as the field type automatically
uses a large list of locales. You can specify these options manually, but then you should just use the
ChoiceType directly.

Rendered as can be various tags (see Select Tag, Checkboxes or Radio Buttons)

Overridden
options • choices

Inherited
options

from the ChoiceType

• error_bubbling
• error_mapping
• expanded
• multiple
• placeholder
• preferred_choices
• trim

from the FormType

1. https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes

2. https://en.wikipedia.org/wiki/ISO_3166-1#Current_codes

3. https://secure.php.net/manual/en/locale.getdefault.php

PDF brought to you by

generated on May 24, 2018

Chapter 28: LocaleType Field | 178

http://sensiolabs.com

Listing 28-1

• data
• disabled
• empty_data
• label
• label_attr
• label_format
• mapped
• required

Parent type ChoiceType

Class LocaleType4

Overridden Options

choices

default: Symfony\Component\Intl\Intl::getLocaleBundle()->getLocaleNames()

The choices option defaults to all locales. It uses the default locale to specify the language.

If you want to override the built-in choices of the locale type, you will also have to set the
choice_loader option to null.

Inherited Options
These options inherit from the ChoiceType:

error_bubbling

type: boolean default: false unless the form is compound

If true, any errors for this field will be passed to the parent field or form. For example, if set to true on
a normal field, any errors for that field will be attached to the main form, not to the specific field.

error_mapping

type: array default: array()

This option allows you to modify the target of a validation error.

Imagine you have a custom method named matchingCityAndZipCode() that validates whether the
city and zip code match. Unfortunately, there is no "matchingCityAndZipCode" field in your form, so all
that Symfony can do is display the error on top of the form.

With customized error mapping, you can do better: map the error to the city field so that it displays above
it:

1
2

public function configureOptions(OptionsResolver $resolver)
{

4. https://api.symfony.com/4.0/Symfony/Component/Form/Extension/Core/Type/LocaleType.html

PDF brought to you by

generated on May 24, 2018

Chapter 28: LocaleType Field | 179

http://sensiolabs.com

Listing 28-2

Listing 28-3

3
4
5
6
7
8

$resolver->setDefaults(array(
'error_mapping' => array(

'matchingCityAndZipCode' => 'city',
),

));
}

Here are the rules for the left and the right side of the mapping:

• The left side contains property paths;
• If the violation is generated on a property or method of a class, its path is simply propertyName;
• If the violation is generated on an entry of an array or ArrayAccess object, the property path is

[indexName];
• You can construct nested property paths by concatenating them, separating properties by dots. For

example: addresses[work].matchingCityAndZipCode;
• The right side contains simply the names of fields in the form.

By default, errors for any property that is not mapped will bubble up to the parent form. You can use
the dot (.) on the left side to map errors of all unmapped properties to a particular field. For instance, to
map all these errors to the city field, use:

1
2
3
4
5

$resolver->setDefaults(array(
'error_mapping' => array(

'.' => 'city',
),

));

expanded

type: boolean default: false

If set to true, radio buttons or checkboxes will be rendered (depending on the multiple value). If false,
a select element will be rendered.

multiple

type: boolean default: false

If true, the user will be able to select multiple options (as opposed to choosing just one option).
Depending on the value of the expanded option, this will render either a select tag or checkboxes if true
and a select tag or radio buttons if false. The returned value will be an array.

placeholder

type: string or boolean

This option determines whether or not a special "empty" option (e.g. "Choose an option") will appear at
the top of a select widget. This option only applies if the multiple option is set to false.

• Add an empty value with "Choose an option" as the text:

1
2
3
4
5
6

use Symfony\Component\Form\Extension\Core\Type\ChoiceType;
// ...

$builder->add('states', ChoiceType::class, array(
'placeholder' => 'Choose an option',

));

• Guarantee that no "empty" value option is displayed:

PDF brought to you by

generated on May 24, 2018

Chapter 28: LocaleType Field | 180

http://sensiolabs.com

Listing 28-4

Listing 28-5

Listing 28-6

Listing 28-7

1
2
3
4
5
6

use Symfony\Component\Form\Extension\Core\Type\ChoiceType;
// ...

$builder->add('states', ChoiceType::class, array(
'placeholder' => false,

));

If you leave the placeholder option unset, then a blank (with no text) option will automatically be
added if and only if the required option is false:

1
2
3
4
5
6
7

use Symfony\Component\Form\Extension\Core\Type\ChoiceType;
// ...

// a blank (with no text) option will be added
$builder->add('states', ChoiceType::class, array(

'required' => false,
));

preferred_choices

type: array, callable or string default: array()

This option allows you to move certain choices to the top of your list with a visual separator between
them and the rest of the options. If you have a form of languages, you can list the most popular on top,
like Bork Bork and Pirate:

1
2
3
4
5
6
7
8
9
10
11
12

use Symfony\Component\Form\Extension\Core\Type\ChoiceType;
// ...

$builder->add('language', ChoiceType::class, array(
'choices' => array(

'English' => 'en',
'Spanish' => 'es',
'Bork' => 'muppets',
'Pirate' => 'arr',

),
'preferred_choices' => array('muppets', 'arr'),

));

This options can also be a callback function to give you more flexibility. This might be especially useful
if your values are objects:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

use Symfony\Component\Form\Extension\Core\Type\ChoiceType;
// ...

$builder->add('publishAt', ChoiceType::class, array(
'choices' => array(

'now' => new \DateTime('now'),
'tomorrow' => new \DateTime('+1 day'),
'1 week' => new \DateTime('+1 week'),
'1 month' => new \DateTime('+1 month'),

),
'preferred_choices' => function ($value, $key) {

// prefer options within 3 days
return $value <= new \DateTime('+3 days');

},
));

This will "prefer" the "now" and "tomorrow" choices only:

PDF brought to you by

generated on May 24, 2018

Chapter 28: LocaleType Field | 181

http://sensiolabs.com

Listing 28-8

Listing 28-9

Finally, if your values are objects, you can also specify a property path string on the object that will return
true or false.

The preferred choices are only meaningful when rendering a select element (i.e. expanded false). The
preferred choices and normal choices are separated visually by a set of dotted lines (i.e. ------------
-------). This can be customized when rendering the field:

1 {{ form_widget(form.publishAt, { 'separator': '=====' }) }}

trim

type: boolean default: false

Trimming is disabled by default because the selected value or values must match the given choice values
exactly (and they could contain whitespaces).

These options inherit from the FormType:

data

type: mixed default: Defaults to field of the underlying structure.

When you create a form, each field initially displays the value of the corresponding property of the form's
domain data (e.g. if you bind an object to the form). If you want to override this initial value for the form
or an individual field, you can set it in the data option:

1
2
3
4
5
6

use Symfony\Component\Form\Extension\Core\Type\HiddenType;
// ...

$builder->add('token', HiddenType::class, array(
'data' => 'abcdef',

));

The data option always overrides the value taken from the domain data (object) when rendering.
This means the object value is also overriden when the form edits an already persisted object, causing
it to lose its persisted value when the form is submitted.

disabled

type: boolean default: false

If you don't want a user to modify the value of a field, you can set the disabled option to true. Any
submitted value will be ignored.

empty_data

type: mixed

The actual default value of this option depends on other field options:

PDF brought to you by

generated on May 24, 2018

Chapter 28: LocaleType Field | 182

http://sensiolabs.com

Listing 28-10

Listing 28-11

Listing 28-12

• If multiple is false and expanded is false, then '' (empty string);
• Otherwise array() (empty array).

This option determines what value the field will return when the submitted value is empty (or missing).
It does not set an initial value if none is provided when the form is rendered in a view.

This means it helps you handling form submission with blank fields. For example, if you want the name
field to be explicitly set to John Doe when no value is selected, you can do it like this:

$builder->add('name', null, array(
'required' => false,
'empty_data' => 'John Doe',

));

This will still render an empty text box, but upon submission the John Doe value will be set. Use the
data or placeholder options to show this initial value in the rendered form.

If a form is compound, you can set empty_data as an array, object or closure. See the How to Configure
empty Data for a Form Class article for more details about these options.

If you want to set the empty_data option for your entire form class, see the How to Configure empty
Data for a Form Class article.

Form data transformers will still be applied to the empty_data value. This means that an empty
string will be cast to null. Use a custom data transformer if you explicitly want to return the empty
string.

label

type: string default: The label is "guessed" from the field name

Sets the label that will be used when rendering the field. Setting to false will suppress the label. The label
can also be directly set inside the template:

1 {{ form_label(form.name, 'Your name') }}

label_attr

type: array default: array()

Sets the HTML attributes for the <label> element, which will be used when rendering the label for the
field. It's an associative array with HTML attribute as a key. This attributes can also be directly set inside
the template:

1
2
3

{{ form_label(form.name, 'Your name', {
'label_attr': {'class': 'CUSTOM_LABEL_CLASS'}

}) }}

label_format

type: string default: null

Configures the string used as the label of the field, in case the label option was not set. This is useful
when using keyword translation messages.

PDF brought to you by

generated on May 24, 2018

Chapter 28: LocaleType Field | 183

http://sensiolabs.com

Listing 28-13

If you're using keyword translation messages as labels, you often end up having multiple keyword
messages for the same label (e.g. profile_address_street, invoice_address_street). This is
because the label is build for each "path" to a field. To avoid duplicated keyword messages, you can
configure the label format to a static value, like:

1
2
3
4
5
6
7
8

// ...
$profileFormBuilder->add('address', AddressType::class, array(

'label_format' => 'form.address.%name%',
));

$invoiceFormBuilder->add('invoice', AddressType::class, array(
'label_format' => 'form.address.%name%',

));

This option is inherited by the child types. With the code above, the label of the street field of both
forms will use the form.address.street keyword message.

Two variables are available in the label format:
%id%%id%

A unique identifier for the field, consisting of the complete path to the field and the field name (e.g.
profile_address_street);

%name%%name%

The field name (e.g. street).

The default value (null) results in a "humanized" version of the field name.

The label_format option is evaluated in the form theme. Make sure to update your templates in
case you customized form theming.

mapped

type: boolean default: true

If you wish the field to be ignored when reading or writing to the object, you can set the mapped option
to false.

required

type: boolean default: true

If true, an HTML5 required attribute5 will be rendered. The corresponding label will also render with a
required class.

This is superficial and independent from validation. At best, if you let Symfony guess your field type, then
the value of this option will be guessed from your validation information.

The required option also affects how empty data for each field is handled. For more details, see the
empty_data option.

5. http://diveintohtml5.info/forms.html

PDF brought to you by

generated on May 24, 2018

Chapter 28: LocaleType Field | 184

http://sensiolabs.com

Chapter 29

TimezoneType Field

The TimezoneType is a subset of the ChoiceType that allows the user to select from all possible
timezones.

The "value" for each timezone is the full timezone name, such as America/Chicago or Europe/
Istanbul.

Unlike the ChoiceType, you don't need to specify a choices option as the field type automatically
uses a large list of timezones. You can specify the option manually, but then you should just use the
ChoiceType directly.

Rendered as can be various tags (see Select Tag, Checkboxes or Radio Buttons)

Options
• input
• regions

Overridden
options • choices

Inherited
options

from the ChoiceType

• expanded
• multiple
• placeholder
• preferred_choices
• trim

from the FormType

• data
• disabled
• empty_data
• error_bubbling
• error_mapping
• label

PDF brought to you by

generated on May 24, 2018

Chapter 29: TimezoneType Field | 185

http://sensiolabs.com

• label_attr
• label_format
• mapped
• required

Parent type ChoiceType

Class TimezoneType1

Field Options

input

type: string default: string

The format of the input data - i.e. the format that the timezone is stored on your underlying object. Valid
values are:

• string (e.g. America/New_York)
• datetimezone (a DateTimeZone object)

regions

type: int default: \DateTimeZone::ALL

The available regions in the timezone choice list. For example: DateTimeZone::AMERICA |
DateTimeZone::EUROPE

Overridden Options

choices

default: An array of timezones.

The Timezone type defaults the choices to all timezones returned by
DateTimeZone::listIdentifiers()2, broken down by continent.

If you want to override the built-in choices of the timezone type, you will also have to set the
choice_loader option to null.

Inherited Options
These options inherit from the ChoiceType:

1. https://api.symfony.com/4.0/Symfony/Component/Form/Extension/Core/Type/TimezoneType.html

2. https://secure.php.net/manual/en/datetimezone.listidentifiers.php

PDF brought to you by

generated on May 24, 2018

Chapter 29: TimezoneType Field | 186

http://sensiolabs.com

Listing 29-1

Listing 29-2

Listing 29-3

Listing 29-4

expanded

type: boolean default: false

If set to true, radio buttons or checkboxes will be rendered (depending on the multiple value). If false,
a select element will be rendered.

multiple

type: boolean default: false

If true, the user will be able to select multiple options (as opposed to choosing just one option).
Depending on the value of the expanded option, this will render either a select tag or checkboxes if true
and a select tag or radio buttons if false. The returned value will be an array.

placeholder

type: string or boolean

This option determines whether or not a special "empty" option (e.g. "Choose an option") will appear at
the top of a select widget. This option only applies if the multiple option is set to false.

• Add an empty value with "Choose an option" as the text:

1
2
3
4
5
6

use Symfony\Component\Form\Extension\Core\Type\ChoiceType;
// ...

$builder->add('states', ChoiceType::class, array(
'placeholder' => 'Choose an option',

));

• Guarantee that no "empty" value option is displayed:

1
2
3
4
5
6

use Symfony\Component\Form\Extension\Core\Type\ChoiceType;
// ...

$builder->add('states', ChoiceType::class, array(
'placeholder' => false,

));

If you leave the placeholder option unset, then a blank (with no text) option will automatically be
added if and only if the required option is false:

1
2
3
4
5
6
7

use Symfony\Component\Form\Extension\Core\Type\ChoiceType;
// ...

// a blank (with no text) option will be added
$builder->add('states', ChoiceType::class, array(

'required' => false,
));

preferred_choices

type: array, callable or string default: array()

This option allows you to move certain choices to the top of your list with a visual separator between
them and the rest of the options. If you have a form of languages, you can list the most popular on top,
like Bork Bork and Pirate:

PDF brought to you by

generated on May 24, 2018

Chapter 29: TimezoneType Field | 187

http://sensiolabs.com

Listing 29-5

Listing 29-6

1
2
3
4
5
6
7
8
9
10
11
12

use Symfony\Component\Form\Extension\Core\Type\ChoiceType;
// ...

$builder->add('language', ChoiceType::class, array(
'choices' => array(

'English' => 'en',
'Spanish' => 'es',
'Bork' => 'muppets',
'Pirate' => 'arr',

),
'preferred_choices' => array('muppets', 'arr'),

));

This options can also be a callback function to give you more flexibility. This might be especially useful
if your values are objects:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

use Symfony\Component\Form\Extension\Core\Type\ChoiceType;
// ...

$builder->add('publishAt', ChoiceType::class, array(
'choices' => array(

'now' => new \DateTime('now'),
'tomorrow' => new \DateTime('+1 day'),
'1 week' => new \DateTime('+1 week'),
'1 month' => new \DateTime('+1 month'),

),
'preferred_choices' => function ($value, $key) {

// prefer options within 3 days
return $value <= new \DateTime('+3 days');

},
));

This will "prefer" the "now" and "tomorrow" choices only:

Finally, if your values are objects, you can also specify a property path string on the object that will return
true or false.

The preferred choices are only meaningful when rendering a select element (i.e. expanded false). The
preferred choices and normal choices are separated visually by a set of dotted lines (i.e. ------------
-------). This can be customized when rendering the field:

1 {{ form_widget(form.publishAt, { 'separator': '=====' }) }}

trim

type: boolean default: false

Trimming is disabled by default because the selected value or values must match the given choice values
exactly (and they could contain whitespaces).

These options inherit from the FormType:

PDF brought to you by

generated on May 24, 2018

Chapter 29: TimezoneType Field | 188

http://sensiolabs.com

Listing 29-7

Listing 29-8

data

type: mixed default: Defaults to field of the underlying structure.

When you create a form, each field initially displays the value of the corresponding property of the form's
domain data (e.g. if you bind an object to the form). If you want to override this initial value for the form
or an individual field, you can set it in the data option:

1
2
3
4
5
6

use Symfony\Component\Form\Extension\Core\Type\HiddenType;
// ...

$builder->add('token', HiddenType::class, array(
'data' => 'abcdef',

));

The data option always overrides the value taken from the domain data (object) when rendering.
This means the object value is also overriden when the form edits an already persisted object, causing
it to lose its persisted value when the form is submitted.

disabled

type: boolean default: false

If you don't want a user to modify the value of a field, you can set the disabled option to true. Any
submitted value will be ignored.

empty_data

type: mixed

The actual default value of this option depends on other field options:

• If multiple is false and expanded is false, then '' (empty string);
• Otherwise array() (empty array).

This option determines what value the field will return when the submitted value is empty (or missing).
It does not set an initial value if none is provided when the form is rendered in a view.

This means it helps you handling form submission with blank fields. For example, if you want the name
field to be explicitly set to John Doe when no value is selected, you can do it like this:

$builder->add('name', null, array(
'required' => false,
'empty_data' => 'John Doe',

));

This will still render an empty text box, but upon submission the John Doe value will be set. Use the
data or placeholder options to show this initial value in the rendered form.

If a form is compound, you can set empty_data as an array, object or closure. See the How to Configure
empty Data for a Form Class article for more details about these options.

If you want to set the empty_data option for your entire form class, see the How to Configure empty
Data for a Form Class article.

PDF brought to you by

generated on May 24, 2018

Chapter 29: TimezoneType Field | 189

http://sensiolabs.com

Listing 29-9

Listing 29-10

Form data transformers will still be applied to the empty_data value. This means that an empty
string will be cast to null. Use a custom data transformer if you explicitly want to return the empty
string.

error_bubbling

type: boolean default: false unless the form is compound

If true, any errors for this field will be passed to the parent field or form. For example, if set to true on
a normal field, any errors for that field will be attached to the main form, not to the specific field.

error_mapping

type: array default: array()

This option allows you to modify the target of a validation error.

Imagine you have a custom method named matchingCityAndZipCode() that validates whether the
city and zip code match. Unfortunately, there is no "matchingCityAndZipCode" field in your form, so all
that Symfony can do is display the error on top of the form.

With customized error mapping, you can do better: map the error to the city field so that it displays above
it:

1
2
3
4
5
6
7
8

public function configureOptions(OptionsResolver $resolver)
{

$resolver->setDefaults(array(
'error_mapping' => array(

'matchingCityAndZipCode' => 'city',
),

));
}

Here are the rules for the left and the right side of the mapping:

• The left side contains property paths;
• If the violation is generated on a property or method of a class, its path is simply propertyName;
• If the violation is generated on an entry of an array or ArrayAccess object, the property path is

[indexName];
• You can construct nested property paths by concatenating them, separating properties by dots. For

example: addresses[work].matchingCityAndZipCode;
• The right side contains simply the names of fields in the form.

By default, errors for any property that is not mapped will bubble up to the parent form. You can use
the dot (.) on the left side to map errors of all unmapped properties to a particular field. For instance, to
map all these errors to the city field, use:

1
2
3
4
5

$resolver->setDefaults(array(
'error_mapping' => array(

'.' => 'city',
),

));

label

type: string default: The label is "guessed" from the field name

Sets the label that will be used when rendering the field. Setting to false will suppress the label. The label
can also be directly set inside the template:

PDF brought to you by

generated on May 24, 2018

Chapter 29: TimezoneType Field | 190

http://sensiolabs.com

Listing 29-11

Listing 29-12

Listing 29-13

1 {{ form_label(form.name, 'Your name') }}

label_attr

type: array default: array()

Sets the HTML attributes for the <label> element, which will be used when rendering the label for the
field. It's an associative array with HTML attribute as a key. This attributes can also be directly set inside
the template:

1
2
3

{{ form_label(form.name, 'Your name', {
'label_attr': {'class': 'CUSTOM_LABEL_CLASS'}

}) }}

label_format

type: string default: null

Configures the string used as the label of the field, in case the label option was not set. This is useful
when using keyword translation messages.

If you're using keyword translation messages as labels, you often end up having multiple keyword
messages for the same label (e.g. profile_address_street, invoice_address_street). This is
because the label is build for each "path" to a field. To avoid duplicated keyword messages, you can
configure the label format to a static value, like:

1
2
3
4
5
6
7
8

// ...
$profileFormBuilder->add('address', AddressType::class, array(

'label_format' => 'form.address.%name%',
));

$invoiceFormBuilder->add('invoice', AddressType::class, array(
'label_format' => 'form.address.%name%',

));

This option is inherited by the child types. With the code above, the label of the street field of both
forms will use the form.address.street keyword message.

Two variables are available in the label format:
%id%%id%

A unique identifier for the field, consisting of the complete path to the field and the field name (e.g.
profile_address_street);

%name%%name%

The field name (e.g. street).

The default value (null) results in a "humanized" version of the field name.

The label_format option is evaluated in the form theme. Make sure to update your templates in
case you customized form theming.

mapped

type: boolean default: true

PDF brought to you by

generated on May 24, 2018

Chapter 29: TimezoneType Field | 191

http://sensiolabs.com

If you wish the field to be ignored when reading or writing to the object, you can set the mapped option
to false.

required

type: boolean default: true

If true, an HTML5 required attribute3 will be rendered. The corresponding label will also render with a
required class.

This is superficial and independent from validation. At best, if you let Symfony guess your field type, then
the value of this option will be guessed from your validation information.

The required option also affects how empty data for each field is handled. For more details, see the
empty_data option.

3. http://diveintohtml5.info/forms.html

PDF brought to you by

generated on May 24, 2018

Chapter 29: TimezoneType Field | 192

http://sensiolabs.com

Chapter 30

CurrencyType Field

The CurrencyType is a subset of the ChoiceType that allows the user to select from a large list of 3-letter
ISO 42171 currencies.

Unlike the ChoiceType, you don't need to specify a choices option as the field type automatically
uses a large list of currencies. You can specify the option manually, but then you should just use the
ChoiceType directly.

Rendered as can be various tags (see Select Tag, Checkboxes or Radio Buttons)

Overridden
options • choices

Inherited
options

from the ChoiceType

• error_bubbling
• expanded
• multiple
• placeholder
• preferred_choices
• trim

from the FormType type

• data
• disabled
• empty_data
• label
• label_attr
• label_format
• mapped
• required

Parent type ChoiceType

1. https://en.wikipedia.org/wiki/ISO_4217

PDF brought to you by

generated on May 24, 2018

Chapter 30: CurrencyType Field | 193

http://sensiolabs.com

Listing 30-1

Class CurrencyType2

Overridden Options

choices

default: Symfony\Component\Intl\Intl::getCurrencyBundle()->getCurrencyNames()

The choices option defaults to all currencies.

If you want to override the built-in choices of the currency type, you will also have to set the
choice_loader option to null.

Inherited Options
These options inherit from the ChoiceType:

error_bubbling

type: boolean default: false unless the form is compound

If true, any errors for this field will be passed to the parent field or form. For example, if set to true on
a normal field, any errors for that field will be attached to the main form, not to the specific field.

expanded

type: boolean default: false

If set to true, radio buttons or checkboxes will be rendered (depending on the multiple value). If false,
a select element will be rendered.

multiple

type: boolean default: false

If true, the user will be able to select multiple options (as opposed to choosing just one option).
Depending on the value of the expanded option, this will render either a select tag or checkboxes if true
and a select tag or radio buttons if false. The returned value will be an array.

placeholder

type: string or boolean

This option determines whether or not a special "empty" option (e.g. "Choose an option") will appear at
the top of a select widget. This option only applies if the multiple option is set to false.

• Add an empty value with "Choose an option" as the text:

1
2

use Symfony\Component\Form\Extension\Core\Type\ChoiceType;
// ...

2. https://api.symfony.com/4.0/Symfony/Component/Form/Extension/Core/Type/CurrencyType.html

PDF brought to you by

generated on May 24, 2018

Chapter 30: CurrencyType Field | 194

http://sensiolabs.com

Listing 30-2

Listing 30-3

Listing 30-4

Listing 30-5

3
4
5
6

$builder->add('states', ChoiceType::class, array(
'placeholder' => 'Choose an option',

));

• Guarantee that no "empty" value option is displayed:

1
2
3
4
5
6

use Symfony\Component\Form\Extension\Core\Type\ChoiceType;
// ...

$builder->add('states', ChoiceType::class, array(
'placeholder' => false,

));

If you leave the placeholder option unset, then a blank (with no text) option will automatically be
added if and only if the required option is false:

1
2
3
4
5
6
7

use Symfony\Component\Form\Extension\Core\Type\ChoiceType;
// ...

// a blank (with no text) option will be added
$builder->add('states', ChoiceType::class, array(

'required' => false,
));

preferred_choices

type: array, callable or string default: array()

This option allows you to move certain choices to the top of your list with a visual separator between
them and the rest of the options. If you have a form of languages, you can list the most popular on top,
like Bork Bork and Pirate:

1
2
3
4
5
6
7
8
9
10
11
12

use Symfony\Component\Form\Extension\Core\Type\ChoiceType;
// ...

$builder->add('language', ChoiceType::class, array(
'choices' => array(

'English' => 'en',
'Spanish' => 'es',
'Bork' => 'muppets',
'Pirate' => 'arr',

),
'preferred_choices' => array('muppets', 'arr'),

));

This options can also be a callback function to give you more flexibility. This might be especially useful
if your values are objects:

1
2
3
4
5
6
7
8
9
10
11
12
13

use Symfony\Component\Form\Extension\Core\Type\ChoiceType;
// ...

$builder->add('publishAt', ChoiceType::class, array(
'choices' => array(

'now' => new \DateTime('now'),
'tomorrow' => new \DateTime('+1 day'),
'1 week' => new \DateTime('+1 week'),
'1 month' => new \DateTime('+1 month'),

),
'preferred_choices' => function ($value, $key) {

// prefer options within 3 days
return $value <= new \DateTime('+3 days');

PDF brought to you by

generated on May 24, 2018

Chapter 30: CurrencyType Field | 195

http://sensiolabs.com

Listing 30-6

Listing 30-7

14
15

},
));

This will "prefer" the "now" and "tomorrow" choices only:

Finally, if your values are objects, you can also specify a property path string on the object that will return
true or false.

The preferred choices are only meaningful when rendering a select element (i.e. expanded false). The
preferred choices and normal choices are separated visually by a set of dotted lines (i.e. ------------
-------). This can be customized when rendering the field:

1 {{ form_widget(form.publishAt, { 'separator': '=====' }) }}

trim

type: boolean default: false

Trimming is disabled by default because the selected value or values must match the given choice values
exactly (and they could contain whitespaces).

These options inherit from the FormType:

data

type: mixed default: Defaults to field of the underlying structure.

When you create a form, each field initially displays the value of the corresponding property of the form's
domain data (e.g. if you bind an object to the form). If you want to override this initial value for the form
or an individual field, you can set it in the data option:

1
2
3
4
5
6

use Symfony\Component\Form\Extension\Core\Type\HiddenType;
// ...

$builder->add('token', HiddenType::class, array(
'data' => 'abcdef',

));

The data option always overrides the value taken from the domain data (object) when rendering.
This means the object value is also overriden when the form edits an already persisted object, causing
it to lose its persisted value when the form is submitted.

disabled

type: boolean default: false

If you don't want a user to modify the value of a field, you can set the disabled option to true. Any
submitted value will be ignored.

PDF brought to you by

generated on May 24, 2018

Chapter 30: CurrencyType Field | 196

http://sensiolabs.com

Listing 30-8

Listing 30-9

Listing 30-10

empty_data

type: mixed

The actual default value of this option depends on other field options:

• If multiple is false and expanded is false, then '' (empty string);
• Otherwise array() (empty array).

This option determines what value the field will return when the submitted value is empty (or missing).
It does not set an initial value if none is provided when the form is rendered in a view.

This means it helps you handling form submission with blank fields. For example, if you want the name
field to be explicitly set to John Doe when no value is selected, you can do it like this:

$builder->add('name', null, array(
'required' => false,
'empty_data' => 'John Doe',

));

This will still render an empty text box, but upon submission the John Doe value will be set. Use the
data or placeholder options to show this initial value in the rendered form.

If a form is compound, you can set empty_data as an array, object or closure. See the How to Configure
empty Data for a Form Class article for more details about these options.

If you want to set the empty_data option for your entire form class, see the How to Configure empty
Data for a Form Class article.

Form data transformers will still be applied to the empty_data value. This means that an empty
string will be cast to null. Use a custom data transformer if you explicitly want to return the empty
string.

label

type: string default: The label is "guessed" from the field name

Sets the label that will be used when rendering the field. Setting to false will suppress the label. The label
can also be directly set inside the template:

1 {{ form_label(form.name, 'Your name') }}

label_attr

type: array default: array()

Sets the HTML attributes for the <label> element, which will be used when rendering the label for the
field. It's an associative array with HTML attribute as a key. This attributes can also be directly set inside
the template:

1
2
3

{{ form_label(form.name, 'Your name', {
'label_attr': {'class': 'CUSTOM_LABEL_CLASS'}

}) }}

PDF brought to you by

generated on May 24, 2018

Chapter 30: CurrencyType Field | 197

http://sensiolabs.com

Listing 30-11

label_format

type: string default: null

Configures the string used as the label of the field, in case the label option was not set. This is useful
when using keyword translation messages.

If you're using keyword translation messages as labels, you often end up having multiple keyword
messages for the same label (e.g. profile_address_street, invoice_address_street). This is
because the label is build for each "path" to a field. To avoid duplicated keyword messages, you can
configure the label format to a static value, like:

1
2
3
4
5
6
7
8

// ...
$profileFormBuilder->add('address', AddressType::class, array(

'label_format' => 'form.address.%name%',
));

$invoiceFormBuilder->add('invoice', AddressType::class, array(
'label_format' => 'form.address.%name%',

));

This option is inherited by the child types. With the code above, the label of the street field of both
forms will use the form.address.street keyword message.

Two variables are available in the label format:
%id%%id%

A unique identifier for the field, consisting of the complete path to the field and the field name (e.g.
profile_address_street);

%name%%name%

The field name (e.g. street).

The default value (null) results in a "humanized" version of the field name.

The label_format option is evaluated in the form theme. Make sure to update your templates in
case you customized form theming.

mapped

type: boolean default: true

If you wish the field to be ignored when reading or writing to the object, you can set the mapped option
to false.

required

type: boolean default: true

If true, an HTML5 required attribute3 will be rendered. The corresponding label will also render with a
required class.

This is superficial and independent from validation. At best, if you let Symfony guess your field type, then
the value of this option will be guessed from your validation information.

3. http://diveintohtml5.info/forms.html

PDF brought to you by

generated on May 24, 2018

Chapter 30: CurrencyType Field | 198

http://sensiolabs.com

The required option also affects how empty data for each field is handled. For more details, see the
empty_data option.

PDF brought to you by

generated on May 24, 2018

Chapter 30: CurrencyType Field | 199

http://sensiolabs.com

Chapter 31

DateType Field

A field that allows the user to modify date information via a variety of different HTML elements.

This field can be rendered in a variety of different ways via the widget option and can understand a
number of different input formats via the input option.

Underlying Data
Type

can be DateTime, string, timestamp, or array (see the input option)

Rendered as single text box or three select fields

Options
• choice_translation_domain
• days
• placeholder
• format
• html5
• input
• model_timezone
• months
• view_timezone
• widget
• years

Overridden options
• by_reference
• compound
• data_class
• error_bubbling

Inherited options
• data
• disabled
• error_mapping
• inherit_data
• invalid_message

PDF brought to you by

generated on May 24, 2018

Chapter 31: DateType Field | 200

http://sensiolabs.com

Listing 31-1

Listing 31-2

Listing 31-3

• invalid_message_parameters
• mapped

Parent type FormType

Class DateType1

Basic Usage

This field type is highly configurable, but easy to use. The most important options are input and
widget.

Suppose that you have a publishedAt field whose underlying date is a DateTime object. The
following configures the date type for that field as three different choice fields:

1
2
3
4
5
6

use Symfony\Component\Form\Extension\Core\Type\DateType;
// ...

$builder->add('publishedAt', DateType::class, array(
'widget' => 'choice',

));

If your underlying date is not a DateTime object (e.g. it's a unix timestamp), configure the input option.

Rendering a single HTML5 Textbox

For a better user experience, you may want to render a single text field and use some kind of "date picker"
to help your user fill in the right format. To do that, use the single_text widget:

1
2
3
4
5
6
7

use Symfony\Component\Form\Extension\Core\Type\DateType;
// ...

$builder->add('publishedAt', DateType::class, array(
// renders it as a single text box
'widget' => 'single_text',

));

This will render as an input type="date" HTML5 field, which means that some - but not all -
browsers will add nice date picker functionality to the field. If you want to be absolutely sure that
every user has a consistent date picker, use an external JavaScript library.

For example, suppose you want to use the Bootstrap Datepicker2 library. First, make the following
changes:

1
2
3
4
5
6
7
8
9
10
11
12

use Symfony\Component\Form\Extension\Core\Type\DateType;
// ...

$builder->add('publishedAt', DateType::class, array(
'widget' => 'single_text',

// prevents rendering it as type="date", to avoid HTML5 date pickers
'html5' => false,

// adds a class that can be selected in JavaScript
'attr' => ['class' => 'js-datepicker'],

));

1. https://api.symfony.com/4.0/Symfony/Component/Form/Extension/Core/Type/DateType.html

2. https://github.com/eternicode/bootstrap-datepicker

PDF brought to you by

generated on May 24, 2018

Chapter 31: DateType Field | 201

http://sensiolabs.com

Listing 31-4

Listing 31-5

Listing 31-6

Listing 31-7

Then, add the following JavaScript code in your template to initialize the date picker:

1
2
3
4
5
6
7
8

<script>
$(document).ready(function() {

// you may need to change this code if you are not using Bootstrap Datepicker
$('.js-datepicker').datepicker({

format: 'yyyy-mm-dd'
});

});
</script>

This format key tells the date picker to use the date format that Symfony expects. This can be tricky: if
the date picker is misconfigured, Symfony won't understand the format and will throw a validation error.
You can also configure the format that Symfony should expect via the format option.

The string used by a JavaScript date picker to describe its format (e.g. yyyy-mm-dd) may not match
the string that Symfony uses (e.g. yyyy-MM-dd). This is because different libraries use different
formatting rules to describe the date format. Be aware of this - it can be tricky to make the formats
truly match!

Field Options

choice_translation_domain

type: string, boolean or null

This option determines if the choice values should be translated and in which translation domain.

The values of the choice_translation_domain option can be true (reuse the current translation
domain), false (disable translation), null (uses the parent translation domain or the default domain)
or a string which represents the exact translation domain to use.

days

type: array default: 1 to 31

List of days available to the day field type. This option is only relevant when the widget option is set to
choice:

'days' => range(1,31)

placeholder

type: string | array

If your widget option is set to choice, then this field will be represented as a series of select boxes.
When the placeholder value is a string, it will be used as the blank value of all select boxes:

$builder->add('dueDate', DateType::class, array(
'placeholder' => 'Select a value',

));

Alternatively, you can use an array that configures different placeholder values for the year, month and
day fields:

1
2

$builder->add('dueDate', DateType::class, array(
'placeholder' => array(

PDF brought to you by

generated on May 24, 2018

Chapter 31: DateType Field | 202

http://sensiolabs.com

Listing 31-8

3
4
5

'year' => 'Year', 'month' => 'Month', 'day' => 'Day',
)

));

format

type: integer or string default: IntlDateFormatter::MEDIUM3 (or yyyy-MM-dd if widget is
single_text)

Option passed to the IntlDateFormatter class, used to transform user input into the proper format.
This is critical when the widget option is set to single_text and will define how the user will input
the data. By default, the format is determined based on the current user locale: meaning that the expected
format will be different for different users. You can override it by passing the format as a string.

For more information on valid formats, see Date/Time Format Syntax4:

1
2
3
4
5
6
7
8

use Symfony\Component\Form\Extension\Core\Type\DateType;
// ...

$builder->add('date_created', DateType::class, array(
'widget' => 'single_text',
// this is actually the default format for single_text
'format' => 'yyyy-MM-dd',

));

If you want your field to be rendered as an HTML5 "date" field, you have to use a single_text
widget with the yyyy-MM-dd format (the RFC 33395 format) which is the default value if you use
the single_text widget.

html5

type: boolean default: true

If this is set to true (the default), it'll use the HTML5 type (date, time or datetime) to render the field.
When set to false, it'll use the text type.

This is useful when you want to use a custom JavaScript datapicker, which often requires a text type
instead of an HTML5 type.

input

type: string default: datetime

The format of the input data - i.e. the format that the date is stored on your underlying object. Valid
values are:

• string (e.g. 2011-06-05)
• datetime (a DateTime object)
• array (e.g. array('year' => 2011, 'month' => 06, 'day' => 05))
• timestamp (e.g. 1307232000)

The value that comes back from the form will also be normalized back into this format.

3. https://php.net/manual/en/class.intldateformatter.php#intl.intldateformatter-constants

4. http://userguide.icu-project.org/formatparse/datetime#TOC-Date-Time-Format-Syntax

5. https://tools.ietf.org/html/rfc3339

PDF brought to you by

generated on May 24, 2018

Chapter 31: DateType Field | 203

http://sensiolabs.com

If timestamp is used, DateType is limited to dates between Fri, 13 Dec 1901 20:45:54 GMT and
Tue, 19 Jan 2038 03:14:07 GMT on 32bit systems. This is due to a limitation in PHP itself6.

model_timezone

type: string default: system default timezone

Timezone that the input data is stored in. This must be one of the PHP supported timezones7.

months

type: array default: 1 to 12

List of months available to the month field type. This option is only relevant when the widget option is
set to choice.

view_timezone

type: string default: system default timezone

Timezone for how the data should be shown to the user (and therefore also the data that the user
submits). This must be one of the PHP supported timezones8.

widget

type: string default: choice

The basic way in which this field should be rendered. Can be one of the following:

• choice: renders three select inputs. The order of the selects is defined in the format option.
• text: renders a three field input of type text (month, day, year).
• single_text: renders a single input of type date. User's input is validated based on the format option.

years

type: array default: five years before to five years after the current year

List of years available to the year field type. This option is only relevant when the widget option is set
to choice.

Overridden Options

by_reference

default: false

The DateTime classes are treated as immutable objects.

6. https://php.net/manual/en/function.date.php#refsect1-function.date-changelog

7. https://php.net/manual/en/timezones.php

8. https://php.net/manual/en/timezones.php

PDF brought to you by

generated on May 24, 2018

Chapter 31: DateType Field | 204

http://sensiolabs.com

Listing 31-9

compound

type: boolean default: false

This option specifies whether the type contains child types or not. This option is managed internally for
built-in types, so there is no need to configure it explicitly.

data_class

type: string default: null

The internal normalized representation of this type is an array, not a \DateTime object. Therefore,
the data_class option is initialized to null to avoid the FormType object from initializing it to
\DateTime.

error_bubbling

default: false

Inherited Options
These options inherit from the FormType:

data

type: mixed default: Defaults to field of the underlying structure.

When you create a form, each field initially displays the value of the corresponding property of the form's
domain data (e.g. if you bind an object to the form). If you want to override this initial value for the form
or an individual field, you can set it in the data option:

1
2
3
4
5
6

use Symfony\Component\Form\Extension\Core\Type\HiddenType;
// ...

$builder->add('token', HiddenType::class, array(
'data' => 'abcdef',

));

The data option always overrides the value taken from the domain data (object) when rendering.
This means the object value is also overriden when the form edits an already persisted object, causing
it to lose its persisted value when the form is submitted.

disabled

type: boolean default: false

If you don't want a user to modify the value of a field, you can set the disabled option to true. Any
submitted value will be ignored.

error_mapping

type: array default: array()

This option allows you to modify the target of a validation error.

PDF brought to you by

generated on May 24, 2018

Chapter 31: DateType Field | 205

http://sensiolabs.com

Listing 31-10

Listing 31-11

Imagine you have a custom method named matchingCityAndZipCode() that validates whether the
city and zip code match. Unfortunately, there is no "matchingCityAndZipCode" field in your form, so all
that Symfony can do is display the error on top of the form.

With customized error mapping, you can do better: map the error to the city field so that it displays above
it:

1
2
3
4
5
6
7
8

public function configureOptions(OptionsResolver $resolver)
{

$resolver->setDefaults(array(
'error_mapping' => array(

'matchingCityAndZipCode' => 'city',
),

));
}

Here are the rules for the left and the right side of the mapping:

• The left side contains property paths;
• If the violation is generated on a property or method of a class, its path is simply propertyName;
• If the violation is generated on an entry of an array or ArrayAccess object, the property path is

[indexName];
• You can construct nested property paths by concatenating them, separating properties by dots. For

example: addresses[work].matchingCityAndZipCode;
• The right side contains simply the names of fields in the form.

By default, errors for any property that is not mapped will bubble up to the parent form. You can use
the dot (.) on the left side to map errors of all unmapped properties to a particular field. For instance, to
map all these errors to the city field, use:

1
2
3
4
5

$resolver->setDefaults(array(
'error_mapping' => array(

'.' => 'city',
),

));

inherit_data

type: boolean default: false

This option determines if the form will inherit data from its parent form. This can be useful if you
have a set of fields that are duplicated across multiple forms. See How to Reduce Code Duplication with
"inherit_data".

When a field has the inherit_data option set, it uses the data of the parent form as is. This means
that Data Transformers won't be applied to that field.

invalid_message

type: string default: This value is not valid

This is the validation error message that's used if the data entered into this field doesn't make sense (i.e.
fails validation).

This might happen, for example, if the user enters a nonsense string into a TimeType field that cannot be
converted into a real time or if the user enters a string (e.g. apple) into a number field.

Normal (business logic) validation (such as when setting a minimum length for a field) should be set
using validation messages with your validation rules (reference).

PDF brought to you by

generated on May 24, 2018

Chapter 31: DateType Field | 206

http://sensiolabs.com

Listing 31-12

invalid_message_parameters

type: array default: array()

When setting the invalid_message option, you may need to include some variables in the string. This
can be done by adding placeholders to that option and including the variables in this option:

1
2
3
4
5

$builder->add('some_field', SomeFormType::class, array(
// ...
'invalid_message' => 'You entered an invalid value, it should include %num% letters',
'invalid_message_parameters' => array('%num%' => 6),

));

mapped

type: boolean default: true

If you wish the field to be ignored when reading or writing to the object, you can set the mapped option
to false.

Field Variables

Variable Type Usage

widget mixed The value of the widget option.

type string Only present when widget is single_text and HTML5 is activated,
contains the input type to use (datetime, date or time).

date_pattern string A string with the date format to use.

PDF brought to you by

generated on May 24, 2018

Chapter 31: DateType Field | 207

http://sensiolabs.com

Chapter 32

DateIntervalType Field

This field allows the user to select an interval of time. For example, if you want to allow the user to choose
how often they receive a status email, they could use this field to choose intervals like every "10 minutes"
or "3 days".

The field can be rendered in a variety of different ways (see widget) and can be configured to give you a
DateInterval object, an ISO 86011 duration string (e.g. P1DT12H) or an array (see input).

Underlying Data
Type

can be DateInterval, string or array (see the input option)

Rendered as single text box, multiple text boxes or select fields - see the widget option

Options
• days
• hours
• minutes
• months
• seconds
• weeks
• input
• labels
• placeholder
• widget
• with_days
• with_hours
• with_invert
• with_minutes
• with_months
• with_seconds
• with_weeks
• with_years
• years

1. https://en.wikipedia.org/wiki/ISO_8601

PDF brought to you by

generated on May 24, 2018

Chapter 32: DateIntervalType Field | 208

http://sensiolabs.com

Listing 32-1

Listing 32-2

Listing 32-3

Listing 32-4

Inherited options
• data
• disabled
• inherit_data
• invalid_message
• invalid_message_parameters
• mapped

Parent type FormType

Class DateIntervalType2

Basic Usage
This field type is highly configurable, but easy to use. The most important options are input and widget.

You can configure a lot of different options, including exactly which range options to show (e.g. don't
show "months", but do show "days"):

1
2
3
4
5
6
7
8
9
10

$builder->add('remindEvery', DateIntervalType::class, array(
'widget' => 'integer', // render a text field for each part
// 'input' => 'string', // if you want the field to return a ISO 8601 string back to you

// customize which text boxes are shown
'with_years' => false,
'with_months' => false,
'with_days' => true,
'with_hours' => true,

));

Field Options

days

type: array default: 0 to 31

List of days available to the days field type. This option is only relevant when the widget option is set to
choice:

'days' => range(1, 31)

placeholder

type: string or array

If your widget option is set to choice, then this field will be represented as a series of select boxes.
The placeholder option can be used to add a "blank" entry to the top of each select box:

$builder->add('remindEvery', DateIntervalType::class, array(
'placeholder' => '',

));

Alternatively, you can specify a string to be displayed for the "blank" value:

2. https://api.symfony.com/4.0/Symfony/Component/Form/Extension/Core/Type/DateIntervalType.html

PDF brought to you by

generated on May 24, 2018

Chapter 32: DateIntervalType Field | 209

http://sensiolabs.com

Listing 32-5

Listing 32-6

Listing 32-7

$builder->add('remindEvery', DateIntervalType::class, array(
'placeholder' => array('years' => 'Years', 'months' => 'Months', 'days' => 'Days')

));

hours

type: array default: 0 to 24

List of hours available to the hours field type. This option is only relevant when the widget option is set
to choice:

'hours' => range(1, 24)

input

type: string default: dateinterval

The format of the input data - i.e. the format that the interval is stored on your underlying object. Valid
values are:

• string (a string formatted with ISO 86013 standard, e.g. P7Y6M5DT12H15M30S)
• dateinterval (a DateInterval object)
• array (e.g. array('days' => '1', 'hours' => '12',))

The value that comes back from the form will also be normalized back into this format.

labels

type: array default: (see below)

The labels displayed for each of the elements of this type. The default values are null, so they display
the "humanized version" of the child names (Invert, Years, etc.):

1
2
3
4
5
6
7
8
9

'labels' => array(
'invert' => null,
'years' => null,
'months' => null,
'days' => null,
'hours' => null,
'minutes' => null,
'seconds' => null,

)

minutes

type: array default: 0 to 60

List of minutes available to the minutes field type. This option is only relevant when the widget option
is set to choice:

'minutes' => range(1, 60)

months

type: array default: 0 to 12

List of months available to the months field type. This option is only relevant when the widget option
is set to choice:

3. https://en.wikipedia.org/wiki/ISO_8601

PDF brought to you by

generated on May 24, 2018

Chapter 32: DateIntervalType Field | 210

http://sensiolabs.com

Listing 32-8

Listing 32-9

Listing 32-10

'months' => range(1, 12)

seconds

type: array default: 0 to 60

List of seconds available to the seconds field type. This option is only relevant when the widget option
is set to choice:

'seconds' => range(1, 60)

weeks

type: array default: 0 to 52

List of weeks available to the weeks field type. This option is only relevant when the widget option is
set to choice:

'weeks' => range(1, 52)

widget

type: string default: choice

The basic way in which this field should be rendered. Can be one of the following:

• choice: renders one to six select inputs for years, months, weeks, days, hours, minutes and/or
seconds, depending on the with_years, with_months, with_weeks, with_days, with_hours,
with_minutes and with_seconds options. Default: Three fields for years, months and days.

• text: renders one to six text inputs for years, months, weeks, days, hours, minutes and/or seconds,
depending on the with_years, with_months, with_weeks, with_days, with_hours, with_minutes
and with_seconds options. Default: Three fields for years, months and days.

• integer: renders one to six integer inputs for years, months, weeks, days, hours, minutes and/
or seconds, depending on the with_years, with_months, with_weeks, with_days, with_hours,
with_minutes and with_seconds options. Default: Three fields for years, months and days.

• single_text: renders a single input of type text. User's input will be validated against the form
PnYnMnDTnHnMnS (or PnW if using only weeks).

with_days

type: Boolean default: true

Whether or not to include days in the input. This will result in an additional input to capture days.

This can not be used when with_weeks is enabled.

with_hours

type: Boolean default: false

Whether or not to include hours in the input. This will result in an additional input to capture hours.

with_invert

type: Boolean default: false

PDF brought to you by

generated on May 24, 2018

Chapter 32: DateIntervalType Field | 211

http://sensiolabs.com

Listing 32-11

Whether or not to include invert in the input. This will result in an additional checkbox. This can not be
used when the widget option is set to single_text.

with_minutes

type: Boolean default: false

Whether or not to include minutes in the input. This will result in an additional input to capture minutes.

with_months

type: Boolean default: true

Whether or not to include months in the input. This will result in an additional input to capture months.

with_seconds

type: Boolean default: false

Whether or not to include seconds in the input. This will result in an additional input to capture seconds.

with_weeks

type: Boolean default: false

Whether or not to include weeks in the input. This will result in an additional input to capture weeks.

This can not be used when with_days is enabled.

with_years

type: Boolean default: true

Whether or not to include years in the input. This will result in an additional input to capture years.

years

type: array default: 0 to 100

List of years available to the years field type. This option is only relevant when the widget option is set
to choice:

'years' => range(1, 100)

Inherited Options
These options inherit from the form type:

data

type: mixed default: Defaults to field of the underlying structure.

PDF brought to you by

generated on May 24, 2018

Chapter 32: DateIntervalType Field | 212

http://sensiolabs.com

Listing 32-12

Listing 32-13

When you create a form, each field initially displays the value of the corresponding property of the form's
domain data (e.g. if you bind an object to the form). If you want to override this initial value for the form
or an individual field, you can set it in the data option:

1
2
3
4
5
6

use Symfony\Component\Form\Extension\Core\Type\HiddenType;
// ...

$builder->add('token', HiddenType::class, array(
'data' => 'abcdef',

));

The data option always overrides the value taken from the domain data (object) when rendering.
This means the object value is also overriden when the form edits an already persisted object, causing
it to lose its persisted value when the form is submitted.

disabled

type: boolean default: false

If you don't want a user to modify the value of a field, you can set the disabled option to true. Any
submitted value will be ignored.

inherit_data

type: boolean default: false

This option determines if the form will inherit data from its parent form. This can be useful if you
have a set of fields that are duplicated across multiple forms. See How to Reduce Code Duplication with
"inherit_data".

When a field has the inherit_data option set, it uses the data of the parent form as is. This means
that Data Transformers won't be applied to that field.

invalid_message

type: string default: This value is not valid

This is the validation error message that's used if the data entered into this field doesn't make sense (i.e.
fails validation).

This might happen, for example, if the user enters a nonsense string into a TimeType field that cannot be
converted into a real time or if the user enters a string (e.g. apple) into a number field.

Normal (business logic) validation (such as when setting a minimum length for a field) should be set
using validation messages with your validation rules (reference).

invalid_message_parameters

type: array default: array()

When setting the invalid_message option, you may need to include some variables in the string. This
can be done by adding placeholders to that option and including the variables in this option:

1
2
3

$builder->add('some_field', SomeFormType::class, array(
// ...
'invalid_message' => 'You entered an invalid value, it should include %num% letters',

PDF brought to you by

generated on May 24, 2018

Chapter 32: DateIntervalType Field | 213

http://sensiolabs.com

4
5

'invalid_message_parameters' => array('%num%' => 6),
));

mapped

type: boolean default: true

If you wish the field to be ignored when reading or writing to the object, you can set the mapped option
to false.

Field Variables

Variable Type Usage

widget mixed The value of the widget option.

with_days Boolean The value of the with_days option.

with_invert Boolean The value of the with_invert option.

with_hours Boolean The value of the with_hours option.

with_minutes Boolean The value of the with_minutes option.

with_months Boolean The value of the with_months option.

with_seconds Boolean The value of the with_seconds option.

with_weeks Boolean The value of the with_weeks option.

with_years Boolean The value of the with_years option.

PDF brought to you by

generated on May 24, 2018

Chapter 32: DateIntervalType Field | 214

http://sensiolabs.com

Chapter 33

DateTimeType Field

This field type allows the user to modify data that represents a specific date and time (e.g. 1984-06-05
12:15:30).

Can be rendered as a text input or select tags. The underlying format of the data can be a DateTime
object, a string, a timestamp or an array.

Underlying Data
Type

can be DateTime, string, timestamp, or array (see the input option)

Rendered as single text box or three select fields

Options
• choice_translation_domain
• date_format
• date_widget
• days
• placeholder
• format
• hours
• html5
• input
• minutes
• model_timezone
• months
• seconds
• time_widget
• view_timezone
• widget
• with_minutes
• with_seconds
• years

Overridden options
• by_reference

PDF brought to you by

generated on May 24, 2018

Chapter 33: DateTimeType Field | 215

http://sensiolabs.com

Listing 33-1

• compound
• data_class
• error_bubbling

Inherited options
• data
• disabled
• inherit_data
• invalid_message
• invalid_message_parameters
• mapped

Parent type FormType

Class DateTimeType1

Field Options

choice_translation_domain

type: string, boolean or null

This option determines if the choice values should be translated and in which translation domain.

The values of the choice_translation_domain option can be true (reuse the current translation
domain), false (disable translation), null (uses the parent translation domain or the default domain)
or a string which represents the exact translation domain to use.

date_format

type: integer or string default: IntlDateFormatter::MEDIUM

Defines the format option that will be passed down to the date field. See the DateType's format option
for more details.

date_widget

type: string default: choice

The basic way in which this field should be rendered. Can be one of the following:

• choice: renders three select inputs. The order of the selects is defined in the format option.
• text: renders a three field input of type text (month, day, year).
• single_text: renders a single input of type date. User's input is validated based on the format option.

days

type: array default: 1 to 31

List of days available to the day field type. This option is only relevant when the widget option is set to
choice:

'days' => range(1,31)

1. https://api.symfony.com/4.0/Symfony/Component/Form/Extension/Core/Type/DateTimeType.html

PDF brought to you by

generated on May 24, 2018

Chapter 33: DateTimeType Field | 216

http://sensiolabs.com

Listing 33-2

Listing 33-3

placeholder

type: string | array

If your widget option is set to choice, then this field will be represented as a series of select boxes.
When the placeholder value is a string, it will be used as the blank value of all select boxes:

1
2
3
4
5

use Symfony\Component\Form\Extension\Core\Type\DateTimeType;

$builder->add('startDateTime', DateTimeType::class, array(
'placeholder' => 'Select a value',

));

Alternatively, you can use an array that configures different placeholder values for the year, month, day,
hour, minute and second fields:

1
2
3
4
5
6
7
8

use Symfony\Component\Form\Extension\Core\Type\DateTimeType;

$builder->add('startDateTime', DateTimeType::class, array(
'placeholder' => array(

'year' => 'Year', 'month' => 'Month', 'day' => 'Day',
'hour' => 'Hour', 'minute' => 'Minute', 'second' => 'Second',

)
));

format

type: string default:
Symfony\Component\Form\Extension\Core\Type\DateTimeType::HTML5_FORMAT

If the widget option is set to single_text, this option specifies the format of the input, i.e. how
Symfony will interpret the given input as a datetime string. It defaults to the RFC 33392 format which
is used by the HTML5 datetime field. Keeping the default value will cause the field to be rendered as
an input field with type="datetime". For more information on valid formats, see Date/Time Format
Syntax3.

hours

type: array default: 0 to 23

List of hours available to the hours field type. This option is only relevant when the widget option is set
to choice.

html5

type: boolean default: true

If this is set to true (the default), it'll use the HTML5 type (date, time or datetime) to render the field.
When set to false, it'll use the text type.

This is useful when you want to use a custom JavaScript datapicker, which often requires a text type
instead of an HTML5 type.

input

type: string default: datetime

2. https://tools.ietf.org/html/rfc3339

3. http://userguide.icu-project.org/formatparse/datetime#TOC-Date-Time-Format-Syntax

PDF brought to you by

generated on May 24, 2018

Chapter 33: DateTimeType Field | 217

http://sensiolabs.com

The format of the input data - i.e. the format that the date is stored on your underlying object. Valid
values are:

• string (e.g. 2011-06-05 12:15:00)
• datetime (a DateTime object)
• array (e.g. array(2011, 06, 05, 12, 15, 0))
• timestamp (e.g. 1307276100)

The value that comes back from the form will also be normalized back into this format.

If timestamp is used, DateType is limited to dates between Fri, 13 Dec 1901 20:45:54 GMT and
Tue, 19 Jan 2038 03:14:07 GMT on 32bit systems. This is due to a limitation in PHP itself4.

minutes

type: array default: 0 to 59

List of minutes available to the minutes field type. This option is only relevant when the widget option
is set to choice.

model_timezone

type: string default: system default timezone

Timezone that the input data is stored in. This must be one of the PHP supported timezones5.

months

type: array default: 1 to 12

List of months available to the month field type. This option is only relevant when the widget option is
set to choice.

seconds

type: array default: 0 to 59

List of seconds available to the seconds field type. This option is only relevant when the widget option
is set to choice.

time_widget

type: string default: choice

Defines the widget option for the TimeType.

view_timezone

type: string default: system default timezone

Timezone for how the data should be shown to the user (and therefore also the data that the user
submits). This must be one of the PHP supported timezones6.

4. https://php.net/manual/en/function.date.php#refsect1-function.date-changelog

5. https://php.net/manual/en/timezones.php

6. https://php.net/manual/en/timezones.php

PDF brought to you by

generated on May 24, 2018

Chapter 33: DateTimeType Field | 218

http://sensiolabs.com

widget

type: string default: null

Defines the widget option for both the DateType and TimeType. This can be overridden with the
date_widget and time_widget options.

with_minutes

type: boolean default: true

Whether or not to include minutes in the input. This will result in an additional input to capture minutes.

with_seconds

type: boolean default: false

Whether or not to include seconds in the input. This will result in an additional input to capture seconds.

years

type: array default: five years before to five years after the current year

List of years available to the year field type. This option is only relevant when the widget option is set
to choice.

Overridden Options

by_reference

default: false

The DateTime classes are treated as immutable objects.

compound

type: boolean default: false

This option specifies whether the type contains child types or not. This option is managed internally for
built-in types, so there is no need to configure it explicitly.

data_class

type: string default: null

The internal normalized representation of this type is an array, not a \DateTime object. Therefore,
the data_class option is initialized to null to avoid the FormType object from initializing it to
\DateTime.

error_bubbling

default: false

PDF brought to you by

generated on May 24, 2018

Chapter 33: DateTimeType Field | 219

http://sensiolabs.com

Listing 33-4

Inherited Options
These options inherit from the FormType:

data

type: mixed default: Defaults to field of the underlying structure.

When you create a form, each field initially displays the value of the corresponding property of the form's
domain data (e.g. if you bind an object to the form). If you want to override this initial value for the form
or an individual field, you can set it in the data option:

1
2
3
4
5
6

use Symfony\Component\Form\Extension\Core\Type\HiddenType;
// ...

$builder->add('token', HiddenType::class, array(
'data' => 'abcdef',

));

The data option always overrides the value taken from the domain data (object) when rendering.
This means the object value is also overriden when the form edits an already persisted object, causing
it to lose its persisted value when the form is submitted.

disabled

type: boolean default: false

If you don't want a user to modify the value of a field, you can set the disabled option to true. Any
submitted value will be ignored.

inherit_data

type: boolean default: false

This option determines if the form will inherit data from its parent form. This can be useful if you
have a set of fields that are duplicated across multiple forms. See How to Reduce Code Duplication with
"inherit_data".

When a field has the inherit_data option set, it uses the data of the parent form as is. This means
that Data Transformers won't be applied to that field.

invalid_message

type: string default: This value is not valid

This is the validation error message that's used if the data entered into this field doesn't make sense (i.e.
fails validation).

This might happen, for example, if the user enters a nonsense string into a TimeType field that cannot be
converted into a real time or if the user enters a string (e.g. apple) into a number field.

Normal (business logic) validation (such as when setting a minimum length for a field) should be set
using validation messages with your validation rules (reference).

PDF brought to you by

generated on May 24, 2018

Chapter 33: DateTimeType Field | 220

http://sensiolabs.com

Listing 33-5

invalid_message_parameters

type: array default: array()

When setting the invalid_message option, you may need to include some variables in the string. This
can be done by adding placeholders to that option and including the variables in this option:

1
2
3
4
5

$builder->add('some_field', SomeFormType::class, array(
// ...
'invalid_message' => 'You entered an invalid value, it should include %num% letters',
'invalid_message_parameters' => array('%num%' => 6),

));

mapped

type: boolean default: true

If you wish the field to be ignored when reading or writing to the object, you can set the mapped option
to false.

Field Variables

Variable Type Usage

widget mixed The value of the widget option.

type string Only present when widget is single_text and HTML5 is activated, contains
the input type to use (datetime, date or time).

PDF brought to you by

generated on May 24, 2018

Chapter 33: DateTimeType Field | 221

http://sensiolabs.com

Chapter 34

TimeType Field

A field to capture time input.

This can be rendered as a text field, a series of text fields (e.g. hour, minute, second) or a series of select
fields. The underlying data can be stored as a DateTime object, a string, a timestamp or an array.

Underlying Data
Type

can be DateTime, string, timestamp, or array (see the input option)

Rendered as can be various tags (see below)

Options
• choice_translation_domain
• placeholder
• hours
• html5
• input
• minutes
• model_timezone
• seconds
• view_timezone
• widget
• with_minutes
• with_seconds

Overridden options
• by_reference
• compound
• data_class
• error_bubbling

Inherited Options
• data
• disabled
• error_mapping
• inherit_data

PDF brought to you by

generated on May 24, 2018

Chapter 34: TimeType Field | 222

http://sensiolabs.com

Listing 34-1

Listing 34-2

• invalid_message
• invalid_message_parameters
• mapped

Parent type FormType

Class TimeType1

Basic Usage

This field type is highly configurable, but easy to use. The most important options are input and
widget.

Suppose that you have a startTime field whose underlying time data is a DateTime object. The
following configures the TimeType for that field as two different choice fields:

1
2
3
4
5
6
7

use Symfony\Component\Form\Extension\Core\Type\TimeType;
// ...

$builder->add('startTime', TimeType::class, array(
'input' => 'datetime',
'widget' => 'choice',

));

The input option must be changed to match the type of the underlying date data. For example, if the
startTime field's data were a unix timestamp, you'd need to set input to timestamp:

1
2
3
4
5
6
7

use Symfony\Component\Form\Extension\Core\Type\TimeType;
// ...

$builder->add('startTime', TimeType::class, array(
'input' => 'timestamp',
'widget' => 'choice',

));

The field also supports an array and string as valid input option values.

Field Options

choice_translation_domain

type: string, boolean or null

This option determines if the choice values should be translated and in which translation domain.

The values of the choice_translation_domain option can be true (reuse the current translation
domain), false (disable translation), null (uses the parent translation domain or the default domain)
or a string which represents the exact translation domain to use.

placeholder

type: string | array

1. https://api.symfony.com/4.0/Symfony/Component/Form/Extension/Core/Type/TimeType.html

PDF brought to you by

generated on May 24, 2018

Chapter 34: TimeType Field | 223

http://sensiolabs.com

Listing 34-3

Listing 34-4

If your widget option is set to choice, then this field will be represented as a series of select boxes.
When the placeholder value is a string, it will be used as the blank value of all select boxes:

$builder->add('startTime', 'time', array(
'placeholder' => 'Select a value',

));

Alternatively, you can use an array that configures different placeholder values for the hour, minute and
second fields:

1
2
3
4
5

$builder->add('startTime', 'time', array(
'placeholder' => array(

'hour' => 'Hour', 'minute' => 'Minute', 'second' => 'Second',
)

));

hours

type: array default: 0 to 23

List of hours available to the hours field type. This option is only relevant when the widget option is set
to choice.

html5

type: boolean default: true

If this is set to true (the default), it'll use the HTML5 type (date, time or datetime) to render the field.
When set to false, it'll use the text type.

This is useful when you want to use a custom JavaScript datapicker, which often requires a text type
instead of an HTML5 type.

input

type: string default: datetime

The format of the input data - i.e. the format that the date is stored on your underlying object. Valid
values are:

• string (e.g. 12:17:26)
• datetime (a DateTime object)
• array (e.g. array('hour' => 12, 'minute' => 17, 'second' => 26))
• timestamp (e.g. 1307232000)

The value that comes back from the form will also be normalized back into this format.

minutes

type: array default: 0 to 59

List of minutes available to the minutes field type. This option is only relevant when the widget option
is set to choice.

model_timezone

type: string default: system default timezone

Timezone that the input data is stored in. This must be one of the PHP supported timezones2.

PDF brought to you by

generated on May 24, 2018

Chapter 34: TimeType Field | 224

http://sensiolabs.com

seconds

type: array default: 0 to 59

List of seconds available to the seconds field type. This option is only relevant when the widget option
is set to choice.

view_timezone

type: string default: system default timezone

Timezone for how the data should be shown to the user (and therefore also the data that the user
submits). This must be one of the PHP supported timezones3.

widget

type: string default: choice

The basic way in which this field should be rendered. Can be one of the following:

• choice: renders one, two (default) or three select inputs (hour, minute, second), depending on the
with_minutes and with_seconds options.

• text: renders one, two (default) or three text inputs (hour, minute, second), depending on the
with_minutes and with_seconds options.

• single_text: renders a single input of type time. User's input will be validated against the form hh:mm

(or hh:mm:ss if using seconds).

Combining the widget type single_text and the with_minutes option set to false can cause
unexpected behavior in the client as the input type time might not support selecting an hour only.

with_minutes

type: boolean default: true

Whether or not to include minutes in the input. This will result in an additional input to capture minutes.

with_seconds

type: boolean default: false

Whether or not to include seconds in the input. This will result in an additional input to capture seconds.

Overridden Options

by_reference

default: false

The DateTime classes are treated as immutable objects.

2. https://php.net/manual/en/timezones.php

3. https://php.net/manual/en/timezones.php

PDF brought to you by

generated on May 24, 2018

Chapter 34: TimeType Field | 225

http://sensiolabs.com

Listing 34-5

compound

type: boolean default: false

This option specifies whether the type contains child types or not. This option is managed internally for
built-in types, so there is no need to configure it explicitly.

data_class

type: string default: null

The internal normalized representation of this type is an array, not a \DateTime object. Therefore,
the data_class option is initialized to null to avoid the FormType object from initializing it to
\DateTime.

error_bubbling

default: false

Inherited Options
These options inherit from the FormType:

data

type: mixed default: Defaults to field of the underlying structure.

When you create a form, each field initially displays the value of the corresponding property of the form's
domain data (e.g. if you bind an object to the form). If you want to override this initial value for the form
or an individual field, you can set it in the data option:

1
2
3
4
5
6

use Symfony\Component\Form\Extension\Core\Type\HiddenType;
// ...

$builder->add('token', HiddenType::class, array(
'data' => 'abcdef',

));

The data option always overrides the value taken from the domain data (object) when rendering.
This means the object value is also overriden when the form edits an already persisted object, causing
it to lose its persisted value when the form is submitted.

disabled

type: boolean default: false

If you don't want a user to modify the value of a field, you can set the disabled option to true. Any
submitted value will be ignored.

error_mapping

type: array default: array()

This option allows you to modify the target of a validation error.

PDF brought to you by

generated on May 24, 2018

Chapter 34: TimeType Field | 226

http://sensiolabs.com

Listing 34-6

Listing 34-7

Imagine you have a custom method named matchingCityAndZipCode() that validates whether the
city and zip code match. Unfortunately, there is no "matchingCityAndZipCode" field in your form, so all
that Symfony can do is display the error on top of the form.

With customized error mapping, you can do better: map the error to the city field so that it displays above
it:

1
2
3
4
5
6
7
8

public function configureOptions(OptionsResolver $resolver)
{

$resolver->setDefaults(array(
'error_mapping' => array(

'matchingCityAndZipCode' => 'city',
),

));
}

Here are the rules for the left and the right side of the mapping:

• The left side contains property paths;
• If the violation is generated on a property or method of a class, its path is simply propertyName;
• If the violation is generated on an entry of an array or ArrayAccess object, the property path is

[indexName];
• You can construct nested property paths by concatenating them, separating properties by dots. For

example: addresses[work].matchingCityAndZipCode;
• The right side contains simply the names of fields in the form.

By default, errors for any property that is not mapped will bubble up to the parent form. You can use
the dot (.) on the left side to map errors of all unmapped properties to a particular field. For instance, to
map all these errors to the city field, use:

1
2
3
4
5

$resolver->setDefaults(array(
'error_mapping' => array(

'.' => 'city',
),

));

inherit_data

type: boolean default: false

This option determines if the form will inherit data from its parent form. This can be useful if you
have a set of fields that are duplicated across multiple forms. See How to Reduce Code Duplication with
"inherit_data".

When a field has the inherit_data option set, it uses the data of the parent form as is. This means
that Data Transformers won't be applied to that field.

invalid_message

type: string default: This value is not valid

This is the validation error message that's used if the data entered into this field doesn't make sense (i.e.
fails validation).

This might happen, for example, if the user enters a nonsense string into a TimeType field that cannot be
converted into a real time or if the user enters a string (e.g. apple) into a number field.

Normal (business logic) validation (such as when setting a minimum length for a field) should be set
using validation messages with your validation rules (reference).

PDF brought to you by

generated on May 24, 2018

Chapter 34: TimeType Field | 227

http://sensiolabs.com

Listing 34-8

invalid_message_parameters

type: array default: array()

When setting the invalid_message option, you may need to include some variables in the string. This
can be done by adding placeholders to that option and including the variables in this option:

1
2
3
4
5

$builder->add('some_field', SomeFormType::class, array(
// ...
'invalid_message' => 'You entered an invalid value, it should include %num% letters',
'invalid_message_parameters' => array('%num%' => 6),

));

mapped

type: boolean default: true

If you wish the field to be ignored when reading or writing to the object, you can set the mapped option
to false.

Form Variables

Variable Type Usage

widget mixed The value of the widget option.

with_minutes boolean The value of the with_minutes option.

with_seconds boolean The value of the with_seconds option.

type string Only present when widget is single_text and HTML5 is activated,
contains the input type to use (datetime, date or time).

PDF brought to you by

generated on May 24, 2018

Chapter 34: TimeType Field | 228

http://sensiolabs.com

Chapter 35

BirthdayType Field

A DateType field that specializes in handling birthdate data.

Can be rendered as a single text box, three text boxes (month, day and year), or three select boxes.

This type is essentially the same as the DateType type, but with a more appropriate default for the years
option. The years option defaults to 120 years ago to the current year.

Underlying Data
Type

can be DateTime, string, timestamp, or array (see the input option)

Rendered as can be three select boxes or 1 or 3 text boxes, based on the widget option

Overridden options
• years

Inherited options from the DateType:

• choice_translation_domain
• days
• placeholder
• format
• input
• model_timezone
• months
• view_timezone
• widget

from the FormType:

• data
• disabled
• inherit_data
• invalid_message
• invalid_message_parameters
• mapped

PDF brought to you by

generated on May 24, 2018

Chapter 35: BirthdayType Field | 229

http://sensiolabs.com

Listing 35-1

Listing 35-2

Listing 35-3

Parent type DateType

Class BirthdayType1

Overridden Options

years

type: array default: 120 years ago to the current year

List of years available to the year field type. This option is only relevant when the widget option is set
to choice.

Inherited Options
These options inherit from the DateType:

choice_translation_domain

type: string, boolean or null

This option determines if the choice values should be translated and in which translation domain.

The values of the choice_translation_domain option can be true (reuse the current translation
domain), false (disable translation), null (uses the parent translation domain or the default domain)
or a string which represents the exact translation domain to use.

days

type: array default: 1 to 31

List of days available to the day field type. This option is only relevant when the widget option is set to
choice:

'days' => range(1,31)

placeholder

type: string | array

If your widget option is set to choice, then this field will be represented as a series of select boxes.
When the placeholder value is a string, it will be used as the blank value of all select boxes:

$builder->add('birthdate', BirthdayType::class, array(
'placeholder' => 'Select a value',

));

Alternatively, you can use an array that configures different placeholder values for the year, month and
day fields:

1
2
3

$builder->add('birthdate', BirthdayType::class, array(
'placeholder' => array(

'year' => 'Year', 'month' => 'Month', 'day' => 'Day',

1. https://api.symfony.com/4.0/Symfony/Component/Form/Extension/Core/Type/BirthdayType.html

PDF brought to you by

generated on May 24, 2018

Chapter 35: BirthdayType Field | 230

http://sensiolabs.com

Listing 35-4

4
5

)
));

format

type: integer or string default: IntlDateFormatter::MEDIUM2 (or yyyy-MM-dd if widget is
single_text)

Option passed to the IntlDateFormatter class, used to transform user input into the proper format.
This is critical when the widget option is set to single_text and will define how the user will input
the data. By default, the format is determined based on the current user locale: meaning that the expected
format will be different for different users. You can override it by passing the format as a string.

For more information on valid formats, see Date/Time Format Syntax3:

1
2
3
4
5
6
7
8

use Symfony\Component\Form\Extension\Core\Type\DateType;
// ...

$builder->add('date_created', DateType::class, array(
'widget' => 'single_text',
// this is actually the default format for single_text
'format' => 'yyyy-MM-dd',

));

If you want your field to be rendered as an HTML5 "date" field, you have to use a single_text
widget with the yyyy-MM-dd format (the RFC 33394 format) which is the default value if you use
the single_text widget.

input

type: string default: datetime

The format of the input data - i.e. the format that the date is stored on your underlying object. Valid
values are:

• string (e.g. 2011-06-05)
• datetime (a DateTime object)
• array (e.g. array('year' => 2011, 'month' => 06, 'day' => 05))
• timestamp (e.g. 1307232000)

The value that comes back from the form will also be normalized back into this format.

If timestamp is used, DateType is limited to dates between Fri, 13 Dec 1901 20:45:54 GMT and
Tue, 19 Jan 2038 03:14:07 GMT on 32bit systems. This is due to a limitation in PHP itself5.

model_timezone

type: string default: system default timezone

Timezone that the input data is stored in. This must be one of the PHP supported timezones6.

2. https://php.net/manual/en/class.intldateformatter.php#intl.intldateformatter-constants

3. http://userguide.icu-project.org/formatparse/datetime#TOC-Date-Time-Format-Syntax

4. https://tools.ietf.org/html/rfc3339

5. https://php.net/manual/en/function.date.php#refsect1-function.date-changelog

PDF brought to you by

generated on May 24, 2018

Chapter 35: BirthdayType Field | 231

http://sensiolabs.com

Listing 35-5

months

type: array default: 1 to 12

List of months available to the month field type. This option is only relevant when the widget option is
set to choice.

view_timezone

type: string default: system default timezone

Timezone for how the data should be shown to the user (and therefore also the data that the user
submits). This must be one of the PHP supported timezones7.

widget

type: string default: choice

The basic way in which this field should be rendered. Can be one of the following:

• choice: renders three select inputs. The order of the selects is defined in the format option.
• text: renders a three field input of type text (month, day, year).
• single_text: renders a single input of type date. User's input is validated based on the format option.

These options inherit from the FormType:

data

type: mixed default: Defaults to field of the underlying structure.

When you create a form, each field initially displays the value of the corresponding property of the form's
domain data (e.g. if you bind an object to the form). If you want to override this initial value for the form
or an individual field, you can set it in the data option:

1
2
3
4
5
6

use Symfony\Component\Form\Extension\Core\Type\HiddenType;
// ...

$builder->add('token', HiddenType::class, array(
'data' => 'abcdef',

));

The data option always overrides the value taken from the domain data (object) when rendering.
This means the object value is also overriden when the form edits an already persisted object, causing
it to lose its persisted value when the form is submitted.

disabled

type: boolean default: false

If you don't want a user to modify the value of a field, you can set the disabled option to true. Any
submitted value will be ignored.

inherit_data

type: boolean default: false

6. https://php.net/manual/en/timezones.php

7. https://php.net/manual/en/timezones.php

PDF brought to you by

generated on May 24, 2018

Chapter 35: BirthdayType Field | 232

http://sensiolabs.com

Listing 35-6

This option determines if the form will inherit data from its parent form. This can be useful if you
have a set of fields that are duplicated across multiple forms. See How to Reduce Code Duplication with
"inherit_data".

When a field has the inherit_data option set, it uses the data of the parent form as is. This means
that Data Transformers won't be applied to that field.

invalid_message

type: string default: This value is not valid

This is the validation error message that's used if the data entered into this field doesn't make sense (i.e.
fails validation).

This might happen, for example, if the user enters a nonsense string into a TimeType field that cannot be
converted into a real time or if the user enters a string (e.g. apple) into a number field.

Normal (business logic) validation (such as when setting a minimum length for a field) should be set
using validation messages with your validation rules (reference).

invalid_message_parameters

type: array default: array()

When setting the invalid_message option, you may need to include some variables in the string. This
can be done by adding placeholders to that option and including the variables in this option:

1
2
3
4
5

$builder->add('some_field', SomeFormType::class, array(
// ...
'invalid_message' => 'You entered an invalid value, it should include %num% letters',
'invalid_message_parameters' => array('%num%' => 6),

));

mapped

type: boolean default: true

If you wish the field to be ignored when reading or writing to the object, you can set the mapped option
to false.

PDF brought to you by

generated on May 24, 2018

Chapter 35: BirthdayType Field | 233

http://sensiolabs.com

Listing 36-1

Chapter 36

CheckboxType Field

Creates a single input checkbox. This should always be used for a field that has a boolean value: if the
box is checked, the field will be set to true, if the box is unchecked, the value will be set to false.

Rendered as input checkbox field

Options
• value

Overridden
options • compound

• empty_data

Inherited
options • data

• disabled
• error_bubbling
• error_mapping
• label
• label_attr
• label_format
• mapped
• required

Parent type FormType

Class CheckboxType1

Example Usage

1
2

use Symfony\Component\Form\Extension\Core\Type\CheckboxType;
// ...

1. https://api.symfony.com/4.0/Symfony/Component/Form/Extension/Core/Type/CheckboxType.html

PDF brought to you by

generated on May 24, 2018

Chapter 36: CheckboxType Field | 234

http://sensiolabs.com

Listing 36-2

3
4
5
6
7

$builder->add('public', CheckboxType::class, array(
'label' => 'Show this entry publicly?',
'required' => false,

));

Field Options

value

type: mixed default: 1

The value that's actually used as the value for the checkbox or radio button. This does not affect the value
that's set on your object.

To make a checkbox or radio button checked by default, use the data option.

Overridden Options

compound

type: boolean default: false

This option specifies if a form is compound. As it's not the case for checkbox, by default the value is
overridden with the false value.

empty_data

type: string default: mixed

This option determines what value the field will return when the placeholder choice is selected. In the
checkbox and the radio type, the value of empty_data is overriden by the value returned by the data
transformer (see How to Use Data Transformers).

Inherited Options
These options inherit from the FormType:

data

type: mixed default: Defaults to field of the underlying structure.

When you create a form, each field initially displays the value of the corresponding property of the form's
domain data (e.g. if you bind an object to the form). If you want to override this initial value for the form
or an individual field, you can set it in the data option:

1
2
3

use Symfony\Component\Form\Extension\Core\Type\HiddenType;
// ...

PDF brought to you by

generated on May 24, 2018

Chapter 36: CheckboxType Field | 235

http://sensiolabs.com

Listing 36-3

4
5
6

$builder->add('token', HiddenType::class, array(
'data' => 'abcdef',

));

The data option always overrides the value taken from the domain data (object) when rendering.
This means the object value is also overriden when the form edits an already persisted object, causing
it to lose its persisted value when the form is submitted.

disabled

type: boolean default: false

If you don't want a user to modify the value of a field, you can set the disabled option to true. Any
submitted value will be ignored.

error_bubbling

type: boolean default: false unless the form is compound

If true, any errors for this field will be passed to the parent field or form. For example, if set to true on
a normal field, any errors for that field will be attached to the main form, not to the specific field.

error_mapping

type: array default: array()

This option allows you to modify the target of a validation error.

Imagine you have a custom method named matchingCityAndZipCode() that validates whether the
city and zip code match. Unfortunately, there is no "matchingCityAndZipCode" field in your form, so all
that Symfony can do is display the error on top of the form.

With customized error mapping, you can do better: map the error to the city field so that it displays above
it:

1
2
3
4
5
6
7
8

public function configureOptions(OptionsResolver $resolver)
{

$resolver->setDefaults(array(
'error_mapping' => array(

'matchingCityAndZipCode' => 'city',
),

));
}

Here are the rules for the left and the right side of the mapping:

• The left side contains property paths;
• If the violation is generated on a property or method of a class, its path is simply propertyName;
• If the violation is generated on an entry of an array or ArrayAccess object, the property path is

[indexName];
• You can construct nested property paths by concatenating them, separating properties by dots. For

example: addresses[work].matchingCityAndZipCode;
• The right side contains simply the names of fields in the form.

By default, errors for any property that is not mapped will bubble up to the parent form. You can use
the dot (.) on the left side to map errors of all unmapped properties to a particular field. For instance, to
map all these errors to the city field, use:

PDF brought to you by

generated on May 24, 2018

Chapter 36: CheckboxType Field | 236

http://sensiolabs.com

Listing 36-4

Listing 36-5

Listing 36-6

Listing 36-7

1
2
3
4
5

$resolver->setDefaults(array(
'error_mapping' => array(

'.' => 'city',
),

));

label

type: string default: The label is "guessed" from the field name

Sets the label that will be used when rendering the field. Setting to false will suppress the label. The label
can also be directly set inside the template:

1 {{ form_label(form.name, 'Your name') }}

label_attr

type: array default: array()

Sets the HTML attributes for the <label> element, which will be used when rendering the label for the
field. It's an associative array with HTML attribute as a key. This attributes can also be directly set inside
the template:

1
2
3

{{ form_label(form.name, 'Your name', {
'label_attr': {'class': 'CUSTOM_LABEL_CLASS'}

}) }}

label_format

type: string default: null

Configures the string used as the label of the field, in case the label option was not set. This is useful
when using keyword translation messages.

If you're using keyword translation messages as labels, you often end up having multiple keyword
messages for the same label (e.g. profile_address_street, invoice_address_street). This is
because the label is build for each "path" to a field. To avoid duplicated keyword messages, you can
configure the label format to a static value, like:

1
2
3
4
5
6
7
8

// ...
$profileFormBuilder->add('address', AddressType::class, array(

'label_format' => 'form.address.%name%',
));

$invoiceFormBuilder->add('invoice', AddressType::class, array(
'label_format' => 'form.address.%name%',

));

This option is inherited by the child types. With the code above, the label of the street field of both
forms will use the form.address.street keyword message.

Two variables are available in the label format:
%id%%id%

A unique identifier for the field, consisting of the complete path to the field and the field name (e.g.
profile_address_street);

%name%%name%

The field name (e.g. street).

PDF brought to you by

generated on May 24, 2018

Chapter 36: CheckboxType Field | 237

http://sensiolabs.com

The default value (null) results in a "humanized" version of the field name.

The label_format option is evaluated in the form theme. Make sure to update your templates in
case you customized form theming.

mapped

type: boolean default: true

If you wish the field to be ignored when reading or writing to the object, you can set the mapped option
to false.

required

type: boolean default: true

If true, an HTML5 required attribute2 will be rendered. The corresponding label will also render with a
required class.

This is superficial and independent from validation. At best, if you let Symfony guess your field type, then
the value of this option will be guessed from your validation information.

The required option also affects how empty data for each field is handled. For more details, see the
empty_data option.

Form Variables

Variable Type Usage

checked boolean Whether or not the current input is checked.

2. http://diveintohtml5.info/forms.html

PDF brought to you by

generated on May 24, 2018

Chapter 36: CheckboxType Field | 238

http://sensiolabs.com

Listing 37-1

Chapter 37

FileType Field

The FileType represents a file input in your form.

Rendered as input file field

Options
• multiple

Overridden
options • compound

• data_class
• empty_data

Inherited
options • disabled

• error_bubbling
• error_mapping
• label
• label_attr
• label_format
• mapped
• required

Parent type FormType

Class FileType1

Basic Usage
Say you have this form definition:

use Symfony\Component\Form\Extension\Core\Type\FileType;
// ...

1. https://api.symfony.com/4.0/Symfony/Component/Form/Extension/Core/Type/FileType.html

PDF brought to you by

generated on May 24, 2018

Chapter 37: FileType Field | 239

http://sensiolabs.com

Listing 37-2

Listing 37-3

$builder->add('attachment', FileType::class);

When the form is submitted, the attachment field will be an instance of UploadedFile2. It can be
used to move the attachment file to a permanent location:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

use Symfony\Component\HttpFoundation\File\UploadedFile;

public function upload()
{

// ...

if ($form->isSubmitted() && $form->isValid()) {
$someNewFilename = ...

$file = $form['attachment']->getData();
$file->move($directory, $someNewFilename);

// ...
}

// ...
}

The move() method takes a directory and a file name as its arguments. You might calculate the filename
in one of the following ways:

1
2
3
4
5
6
7
8
9
10

// use the original file name
$file->move($directory, $file->getClientOriginalName());

// compute a random name and try to guess the extension (more secure)
$extension = $file->guessExtension();
if (!$extension) {

// extension cannot be guessed
$extension = 'bin';

}
$file->move($directory, rand(1, 99999).'.'.$extension);

Using the original name via getClientOriginalName() is not safe as it could have been manipulated
by the end-user. Moreover, it can contain characters that are not allowed in file names. You should
sanitize the name before using it directly.

Read How to Upload Files for an example of how to manage a file upload associated with a Doctrine
entity.

Field Options

multiple

type: Boolean default: false

When set to true, the user will be able to upload multiple files at the same time.

Overridden Options

compound

type: boolean default: false

2. https://api.symfony.com/4.0/Symfony/Component/HttpFoundation/File/UploadedFile.html

PDF brought to you by

generated on May 24, 2018

Chapter 37: FileType Field | 240

http://sensiolabs.com

Listing 37-4

This option specifies whether the type contains child types or not. This option is managed internally for
built-in types, so there is no need to configure it explicitly.

data_class

type: string default: File3

This option sets the appropriate file-related data mapper to be used by the type.

empty_data

type: mixed default: null

This option determines what value the field will return when the submitted value is empty.

Inherited Options
These options inherit from the FormType:

disabled

type: boolean default: false

If you don't want a user to modify the value of a field, you can set the disabled option to true. Any
submitted value will be ignored.

error_bubbling

type: boolean default: false unless the form is compound

If true, any errors for this field will be passed to the parent field or form. For example, if set to true on
a normal field, any errors for that field will be attached to the main form, not to the specific field.

error_mapping

type: array default: array()

This option allows you to modify the target of a validation error.

Imagine you have a custom method named matchingCityAndZipCode() that validates whether the
city and zip code match. Unfortunately, there is no "matchingCityAndZipCode" field in your form, so all
that Symfony can do is display the error on top of the form.

With customized error mapping, you can do better: map the error to the city field so that it displays above
it:

1
2
3
4
5
6
7
8

public function configureOptions(OptionsResolver $resolver)
{

$resolver->setDefaults(array(
'error_mapping' => array(

'matchingCityAndZipCode' => 'city',
),

));
}

Here are the rules for the left and the right side of the mapping:

3. https://api.symfony.com/4.0/Symfony/Component/HttpFoundation/File/File.html

PDF brought to you by

generated on May 24, 2018

Chapter 37: FileType Field | 241

http://sensiolabs.com

Listing 37-5

Listing 37-6

Listing 37-7

Listing 37-8

• The left side contains property paths;
• If the violation is generated on a property or method of a class, its path is simply propertyName;
• If the violation is generated on an entry of an array or ArrayAccess object, the property path is

[indexName];
• You can construct nested property paths by concatenating them, separating properties by dots. For

example: addresses[work].matchingCityAndZipCode;
• The right side contains simply the names of fields in the form.

By default, errors for any property that is not mapped will bubble up to the parent form. You can use
the dot (.) on the left side to map errors of all unmapped properties to a particular field. For instance, to
map all these errors to the city field, use:

1
2
3
4
5

$resolver->setDefaults(array(
'error_mapping' => array(

'.' => 'city',
),

));

label

type: string default: The label is "guessed" from the field name

Sets the label that will be used when rendering the field. Setting to false will suppress the label. The label
can also be directly set inside the template:

1 {{ form_label(form.name, 'Your name') }}

label_attr

type: array default: array()

Sets the HTML attributes for the <label> element, which will be used when rendering the label for the
field. It's an associative array with HTML attribute as a key. This attributes can also be directly set inside
the template:

1
2
3

{{ form_label(form.name, 'Your name', {
'label_attr': {'class': 'CUSTOM_LABEL_CLASS'}

}) }}

label_format

type: string default: null

Configures the string used as the label of the field, in case the label option was not set. This is useful
when using keyword translation messages.

If you're using keyword translation messages as labels, you often end up having multiple keyword
messages for the same label (e.g. profile_address_street, invoice_address_street). This is
because the label is build for each "path" to a field. To avoid duplicated keyword messages, you can
configure the label format to a static value, like:

1
2
3
4
5
6

// ...
$profileFormBuilder->add('address', AddressType::class, array(

'label_format' => 'form.address.%name%',
));

$invoiceFormBuilder->add('invoice', AddressType::class, array(

PDF brought to you by

generated on May 24, 2018

Chapter 37: FileType Field | 242

http://sensiolabs.com

7
8

'label_format' => 'form.address.%name%',
));

This option is inherited by the child types. With the code above, the label of the street field of both
forms will use the form.address.street keyword message.

Two variables are available in the label format:
%id%%id%

A unique identifier for the field, consisting of the complete path to the field and the field name (e.g.
profile_address_street);

%name%%name%

The field name (e.g. street).

The default value (null) results in a "humanized" version of the field name.

The label_format option is evaluated in the form theme. Make sure to update your templates in
case you customized form theming.

mapped

type: boolean default: true

If you wish the field to be ignored when reading or writing to the object, you can set the mapped option
to false.

required

type: boolean default: true

If true, an HTML5 required attribute4 will be rendered. The corresponding label will also render with a
required class.

This is superficial and independent from validation. At best, if you let Symfony guess your field type, then
the value of this option will be guessed from your validation information.

The required option also affects how empty data for each field is handled. For more details, see the
empty_data option.

Form Variables

Variable Type Usage

type string The type variable is set to file, in order to render as a file input field.

4. http://diveintohtml5.info/forms.html

PDF brought to you by

generated on May 24, 2018

Chapter 37: FileType Field | 243

http://sensiolabs.com

Chapter 38

RadioType Field

Creates a single radio button. If the radio button is selected, the field will be set to the specified value.
Radio buttons cannot be unchecked - the value only changes when another radio button with the same
name gets checked.

The RadioType isn't usually used directly. More commonly it's used internally by other types such as
ChoiceType. If you want to have a boolean field, use CheckboxType.

Rendered as input radio field

Inherited
options

from the CheckboxType:

• value

from the FormType:

• data
• disabled
• empty_data
• error_bubbling
• error_mapping
• label
• label_attr
• label_format
• mapped
• required

Parent type CheckboxType

Class RadioType1

1. https://api.symfony.com/4.0/Symfony/Component/Form/Extension/Core/Type/RadioType.html

PDF brought to you by

generated on May 24, 2018

Chapter 38: RadioType Field | 244

http://sensiolabs.com

Listing 38-1

Inherited Options
These options inherit from the CheckboxType:

value

type: mixed default: 1

The value that's actually used as the value for the checkbox or radio button. This does not affect the value
that's set on your object.

To make a checkbox or radio button checked by default, use the data option.

These options inherit from the FormType:

data

type: mixed default: Defaults to field of the underlying structure.

When you create a form, each field initially displays the value of the corresponding property of the form's
domain data (e.g. if you bind an object to the form). If you want to override this initial value for the form
or an individual field, you can set it in the data option:

1
2
3
4
5
6

use Symfony\Component\Form\Extension\Core\Type\HiddenType;
// ...

$builder->add('token', HiddenType::class, array(
'data' => 'abcdef',

));

The data option always overrides the value taken from the domain data (object) when rendering.
This means the object value is also overriden when the form edits an already persisted object, causing
it to lose its persisted value when the form is submitted.

disabled

type: boolean default: false

If you don't want a user to modify the value of a field, you can set the disabled option to true. Any
submitted value will be ignored.

empty_data

type: string default: mixed

This option determines what value the field will return when the placeholder choice is selected. In the
checkbox and the radio type, the value of empty_data is overriden by the value returned by the data
transformer (see How to Use Data Transformers).

error_bubbling

type: boolean default: false unless the form is compound

PDF brought to you by

generated on May 24, 2018

Chapter 38: RadioType Field | 245

http://sensiolabs.com

Listing 38-2

Listing 38-3

Listing 38-4

If true, any errors for this field will be passed to the parent field or form. For example, if set to true on
a normal field, any errors for that field will be attached to the main form, not to the specific field.

error_mapping

type: array default: array()

This option allows you to modify the target of a validation error.

Imagine you have a custom method named matchingCityAndZipCode() that validates whether the
city and zip code match. Unfortunately, there is no "matchingCityAndZipCode" field in your form, so all
that Symfony can do is display the error on top of the form.

With customized error mapping, you can do better: map the error to the city field so that it displays above
it:

1
2
3
4
5
6
7
8

public function configureOptions(OptionsResolver $resolver)
{

$resolver->setDefaults(array(
'error_mapping' => array(

'matchingCityAndZipCode' => 'city',
),

));
}

Here are the rules for the left and the right side of the mapping:

• The left side contains property paths;
• If the violation is generated on a property or method of a class, its path is simply propertyName;
• If the violation is generated on an entry of an array or ArrayAccess object, the property path is

[indexName];
• You can construct nested property paths by concatenating them, separating properties by dots. For

example: addresses[work].matchingCityAndZipCode;
• The right side contains simply the names of fields in the form.

By default, errors for any property that is not mapped will bubble up to the parent form. You can use
the dot (.) on the left side to map errors of all unmapped properties to a particular field. For instance, to
map all these errors to the city field, use:

1
2
3
4
5

$resolver->setDefaults(array(
'error_mapping' => array(

'.' => 'city',
),

));

label

type: string default: The label is "guessed" from the field name

Sets the label that will be used when rendering the field. Setting to false will suppress the label. The label
can also be directly set inside the template:

1 {{ form_label(form.name, 'Your name') }}

label_attr

type: array default: array()

PDF brought to you by

generated on May 24, 2018

Chapter 38: RadioType Field | 246

http://sensiolabs.com

Listing 38-5

Listing 38-6

Sets the HTML attributes for the <label> element, which will be used when rendering the label for the
field. It's an associative array with HTML attribute as a key. This attributes can also be directly set inside
the template:

1
2
3

{{ form_label(form.name, 'Your name', {
'label_attr': {'class': 'CUSTOM_LABEL_CLASS'}

}) }}

label_format

type: string default: null

Configures the string used as the label of the field, in case the label option was not set. This is useful
when using keyword translation messages.

If you're using keyword translation messages as labels, you often end up having multiple keyword
messages for the same label (e.g. profile_address_street, invoice_address_street). This is
because the label is build for each "path" to a field. To avoid duplicated keyword messages, you can
configure the label format to a static value, like:

1
2
3
4
5
6
7
8

// ...
$profileFormBuilder->add('address', AddressType::class, array(

'label_format' => 'form.address.%name%',
));

$invoiceFormBuilder->add('invoice', AddressType::class, array(
'label_format' => 'form.address.%name%',

));

This option is inherited by the child types. With the code above, the label of the street field of both
forms will use the form.address.street keyword message.

Two variables are available in the label format:
%id%%id%

A unique identifier for the field, consisting of the complete path to the field and the field name (e.g.
profile_address_street);

%name%%name%

The field name (e.g. street).

The default value (null) results in a "humanized" version of the field name.

The label_format option is evaluated in the form theme. Make sure to update your templates in
case you customized form theming.

mapped

type: boolean default: true

If you wish the field to be ignored when reading or writing to the object, you can set the mapped option
to false.

required

type: boolean default: true

PDF brought to you by

generated on May 24, 2018

Chapter 38: RadioType Field | 247

http://sensiolabs.com

If true, an HTML5 required attribute2 will be rendered. The corresponding label will also render with a
required class.

This is superficial and independent from validation. At best, if you let Symfony guess your field type, then
the value of this option will be guessed from your validation information.

The required option also affects how empty data for each field is handled. For more details, see the
empty_data option.

Form Variables

Variable Type Usage

checked boolean Whether or not the current input is checked.

2. http://diveintohtml5.info/forms.html

PDF brought to you by

generated on May 24, 2018

Chapter 38: RadioType Field | 248

http://sensiolabs.com

Chapter 39

CollectionType Field

This field type is used to render a "collection" of some field or form. In the easiest sense, it could be an
array of TextType fields that populate an array emails values. In more complex examples, you can
embed entire forms, which is useful when creating forms that expose one-to-many relationships (e.g. a
product from where you can manage many related product photos).

Rendered as depends on the entry_type option

Options
• allow_add
• allow_delete
• delete_empty
• entry_options
• entry_type
• prototype
• prototype_data
• prototype_name

Inherited
options • by_reference

• empty_data
• error_bubbling
• error_mapping
• label
• label_attr
• label_format
• mapped
• required

Parent type FormType

Class CollectionType1

1. https://api.symfony.com/4.0/Symfony/Component/Form/Extension/Core/Type/CollectionType.html

PDF brought to you by

generated on May 24, 2018

Chapter 39: CollectionType Field | 249

http://sensiolabs.com

Listing 39-1

Listing 39-2

Listing 39-3

Listing 39-4

If you are working with a collection of Doctrine entities, pay special attention to the allow_add,
allow_delete and by_reference options. You can also see a complete example in the How to Embed a
Collection of Forms article.

Basic Usage
This type is used when you want to manage a collection of similar items in a form. For example, suppose
you have an emails field that corresponds to an array of email addresses. In the form, you want to
expose each email address as its own input text box:

1
2
3
4
5
6
7
8
9
10
11
12

use Symfony\Component\Form\Extension\Core\Type\CollectionType;
use Symfony\Component\Form\Extension\Core\Type\EmailType;
// ...

$builder->add('emails', CollectionType::class, array(
// each entry in the array will be an "email" field
'entry_type' => EmailType::class,
// these options are passed to each "email" type
'entry_options' => array(

'attr' => array('class' => 'email-box'),
),

));

The simplest way to render this is all at once:

1 {{ form_row(form.emails) }}

A much more flexible method would look like this:

1
2
3
4
5
6
7
8
9
10
11

{{ form_label(form.emails) }}
{{ form_errors(form.emails) }}

{% for emailField in form.emails %}

{{ form_errors(emailField) }}
{{ form_widget(emailField) }}

{% endfor %}

In both cases, no input fields would render unless your emails data array already contained some
emails.

In this simple example, it's still impossible to add new addresses or remove existing addresses. Adding
new addresses is possible by using the allow_add option (and optionally the prototype option) (see
example below). Removing emails from the emails array is possible with the allow_delete option.

Adding and Removing Items

If allow_add is set to true, then if any unrecognized items are submitted, they'll be added seamlessly to
the array of items. This is great in theory, but takes a little bit more effort in practice to get the client-side
JavaScript correct.

Following along with the previous example, suppose you start with two emails in the emails data array.
In that case, two input fields will be rendered that will look something like this (depending on the name
of your form):

PDF brought to you by

generated on May 24, 2018

Chapter 39: CollectionType Field | 250

http://sensiolabs.com

Listing 39-5

Listing 39-6

Listing 39-7

1
2

<input type="email" id="form_emails_0" name="form[emails][0]" value="foo@foo.com" />
<input type="email" id="form_emails_1" name="form[emails][1]" value="bar@bar.com" />

To allow your user to add another email, just set allow_add to true and - via JavaScript - render another
field with the name form[emails][2] (and so on for more and more fields).

To help make this easier, setting the prototype option to true allows you to render a "template" field,
which you can then use in your JavaScript to help you dynamically create these new fields. A rendered
prototype field will look like this:

1
2
3
4
5

<input type="email"
id="form_emails___name__"
name="form[emails][__name__]"
value=""

/>

By replacing __name__ with some unique value (e.g. 2), you can build and insert new HTML fields into
your form.

Using jQuery, a simple example might look like this. If you're rendering your collection fields all at once
(e.g. form_row(form.emails)), then things are even easier because the data-prototype attribute
is rendered automatically for you (with a slight difference - see note below) and all you need is this
JavaScript code:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

// add-collection-widget.js
jQuery(document).ready(function () {

jQuery('.add-another-collection-widget').click(function (e) {
e.preventDefault();
var list = jQuery(jQuery(this).attr('data-list'));
// Try to find the counter of the list
var counter = list.data('widget-counter') | list.children().length;
// If the counter does not exist, use the length of the list
if (!counter) { counter = list.children().length; }

// grab the prototype template
var newWidget = list.attr('data-prototype');
// replace the "__name__" used in the id and name of the prototype
// with a number that's unique to your emails
// end name attribute looks like name="contact[emails][2]"
newWidget = newWidget.replace(/__name__/g, counter);
// Increase the counter
counter++;
// And store it, the length cannot be used if deleting widgets is allowed
list.data(' widget-counter', counter);

// create a new list element and add it to the list
var newElem = jQuery(list.attr('data-widget-tags')).html(newWidget);
newElem.appendTo(list);

});
});

And update the template as follows:

1
2
3
4
5
6
7
8
9
10
11
12

{{ form_start(form) }}
{# ... #}

{# store the prototype on the data-prototype attribute #}
<ul id="email-fields-list"

data-prototype="{{ form_widget(form.emails.vars.prototype)|e }}"
data-widget-tags="{{ ''|e }}">

{% for emailField in form.emails %}

{{ form_errors(emailField) }}
{{ form_widget(emailField) }}

PDF brought to you by

generated on May 24, 2018

Chapter 39: CollectionType Field | 251

http://sensiolabs.com

13
14
15
16
17
18
19
20
21
22
23

{% endfor %}

<a href="#"
class="add-another-collection-widget"
data-list="#email-fields-list">Add another email

{# ... #}
{{ form_end(form) }}

<script src="add-collection-widget.js"></script>

If you're rendering the entire collection at once, then the prototype is automatically available on the
data-prototype attribute of the element (e.g. div or table) that surrounds your collection. The
only difference is that the entire "form row" is rendered for you, meaning you wouldn't have to wrap
it in any container element as it was done above.

Field Options

allow_add

type: boolean default: false

If set to true, then if unrecognized items are submitted to the collection, they will be added as new
items. The ending array will contain the existing items as well as the new item that was in the submitted
data. See the above example for more details.

The prototype option can be used to help render a prototype item that can be used - with JavaScript - to
create new form items dynamically on the client side. For more information, see the above example and
Allowing "new" Tags with the "Prototype".

If you're embedding entire other forms to reflect a one-to-many database relationship, you may need
to manually ensure that the foreign key of these new objects is set correctly. If you're using Doctrine,
this won't happen automatically. See the above link for more details.

allow_delete

type: boolean default: false

If set to true, then if an existing item is not contained in the submitted data, it will be correctly absent
from the final array of items. This means that you can implement a "delete" button via JavaScript which
simply removes a form element from the DOM. When the user submits the form, its absence from the
submitted data will mean that it's removed from the final array.

For more information, see Allowing Tags to be Removed.

Be careful when using this option when you're embedding a collection of objects. In this case, if any
embedded forms are removed, they will correctly be missing from the final array of objects. However,
depending on your application logic, when one of those objects is removed, you may want to delete it
or at least remove its foreign key reference to the main object. None of this is handled automatically.
For more information, see Allowing Tags to be Removed.

PDF brought to you by

generated on May 24, 2018

Chapter 39: CollectionType Field | 252

http://sensiolabs.com

Listing 39-8

Listing 39-9

delete_empty

type: Boolean or callable default: false

If you want to explicitly remove entirely empty collection entries from your form you have to set this
option to true. However, existing collection entries will only be deleted if you have the allow_delete
option enabled. Otherwise the empty values will be kept.

The delete_empty option only removes items when the normalized value is null. If the nested
entry_type is a compound form type, you must either set the required option to false or set the
empty_data option to null. Both of these options can be set inside entry_options. Read about the
form's empty_data option to learn why this is necessary.

A value is deleted from the collection only if the normalized value is null. However, you can also set
the option value to a callable, which will be executed for each value in the submitted collection. If the
callable returns true, the value is removed from the collection. For example:

1
2
3
4
5
6
7
8
9

use Symfony\Component\Form\Extension\Core\Type\CollectionType;
// ...

$builder->add('users', CollectionType::class, array(
// ...
'delete_empty' => function (User $user = null) {

return null === $user || empty($user->getFirstName());
},

));

Using a callable is particularly useful in case of compound form types, which may define complex
conditions for considering them empty.

entry_options

type: array default: array()

This is the array that's passed to the form type specified in the entry_type option. For example, if you
used the ChoiceType as your entry_type option (e.g. for a collection of drop-down menus), then you'd
need to at least pass the choices option to the underlying type:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

use Symfony\Component\Form\Extension\Core\Type\CollectionType;
use Symfony\Component\Form\Extension\Core\Type\ChoiceType;
// ...

$builder->add('favorite_cities', CollectionType::class, array(
'entry_type' => ChoiceType::class,
'entry_options' => array(

'choices' => array(
'Nashville' => 'nashville',
'Paris' => 'paris',
'Berlin' => 'berlin',
'London' => 'london',

),
),

));

entry_type

type: string default: Symfony\\Component\\Form\\Extension\\Core\\Type\\TextType

PDF brought to you by

generated on May 24, 2018

Chapter 39: CollectionType Field | 253

http://sensiolabs.com

Listing 39-10

Listing 39-11

This is the field type for each item in this collection (e.g. TextType, ChoiceType, etc). For example, if
you have an array of email addresses, you'd use the EmailType. If you want to embed a collection of some
other form, pass the form type class as this option (e.g. MyFormType::class).

prototype

type: boolean default: true

This option is useful when using the allow_add option. If true (and if allow_add is also true), a special
"prototype" attribute will be available so that you can render a "template" example on your page of what
a new element should look like. The name attribute given to this element is __name__. This allows
you to add a "add another" button via JavaScript which reads the prototype, replaces __name__ with
some unique name or number and render it inside your form. When submitted, it will be added to your
underlying array due to the allow_add option.

The prototype field can be rendered via the prototype variable in the collection field:

1 {{ form_row(form.emails.vars.prototype) }}

Note that all you really need is the "widget", but depending on how you're rendering your form, having
the entire "form row" may be easier for you.

If you're rendering the entire collection field at once, then the prototype form row is automatically
available on the data-prototype attribute of the element (e.g. div or table) that surrounds your
collection.

For details on how to actually use this option, see the above example as well as Allowing "new" Tags with
the "Prototype".

prototype_data

type: mixed default: null

Allows you to define specific data for the prototype. Each new row added will initially contain the data
set by this option. By default, the data configured for all entries with the entry_options option will be
used.

1
2
3
4
5
6
7
8
9
10

use Symfony\Component\Form\Extension\Core\Type\CollectionType;
use Symfony\Component\Form\Extension\Core\Type\TextType;
// ...

$builder->add('tags', CollectionType::class, array(
'entry_type' => TextType::class,
'allow_add' => true,
'prototype' => true,
'prototype_data' => 'New Tag Placeholder',

));

prototype_name

type: string default: __name__

If you have several collections in your form, or worse, nested collections you may want to change the
placeholder so that unrelated placeholders are not replaced with the same value.

PDF brought to you by

generated on May 24, 2018

Chapter 39: CollectionType Field | 254

http://sensiolabs.com

Listing 39-12

Listing 39-13

Listing 39-14

Inherited Options
These options inherit from the FormType. Not all options are listed here - only the most applicable to
this type:

by_reference

type: boolean default: true

In most cases, if you have an author field, then you expect setAuthor() to be called on the underlying
object. In some cases, however, setAuthor() may not be called. Setting by_reference to false
ensures that the setter is called in all cases.

To explain this further, here's a simple example:

1
2
3
4
5
6
7
8
9
10
11
12
13

use Symfony\Component\Form\Extension\Core\Type\TextType;
use Symfony\Component\Form\Extension\Core\Type\EmailType;
use Symfony\Component\Form\Extension\Core\Type\FormType;
// ...

$builder = $this->createFormBuilder($article);
$builder

->add('title', TextType::class)
->add(

$builder->create('author', FormType::class, array('by_reference' => ?))
->add('name', TextType::class)
->add('email', EmailType::class)

)

If by_reference is true, the following takes place behind the scenes when you call submit() (or
handleRequest()) on the form:

$article->setTitle('...');
$article->getAuthor()->setName('...');
$article->getAuthor()->setEmail('...');

Notice that setAuthor() is not called. The author is modified by reference.

If you set by_reference to false, submitting looks like this:

1
2
3
4
5

$article->setTitle('...');
$author = clone $article->getAuthor();
$author->setName('...');
$author->setEmail('...');
$article->setAuthor($author);

So, all that by_reference=false really does is force the framework to call the setter on the parent
object.

Similarly, if you're using the CollectionType field where your underlying collection data is an object (like
with Doctrine's ArrayCollection), then by_reference must be set to false if you need the adder
and remover (e.g. addAuthor() and removeAuthor()) to be called.

empty_data

type: mixed

The default value is array() (empty array).

This option determines what value the field will return when the submitted value is empty (or missing).
It does not set an initial value if none is provided when the form is rendered in a view.

PDF brought to you by

generated on May 24, 2018

Chapter 39: CollectionType Field | 255

http://sensiolabs.com

Listing 39-15

Listing 39-16

This means it helps you handling form submission with blank fields. For example, if you want the name
field to be explicitly set to John Doe when no value is selected, you can do it like this:

$builder->add('name', null, array(
'required' => false,
'empty_data' => 'John Doe',

));

This will still render an empty text box, but upon submission the John Doe value will be set. Use the
data or placeholder options to show this initial value in the rendered form.

If a form is compound, you can set empty_data as an array, object or closure. See the How to Configure
empty Data for a Form Class article for more details about these options.

If you want to set the empty_data option for your entire form class, see the How to Configure empty
Data for a Form Class article.

Form data transformers will still be applied to the empty_data value. This means that an empty
string will be cast to null. Use a custom data transformer if you explicitly want to return the empty
string.

error_bubbling

type: boolean default: true

If true, any errors for this field will be passed to the parent field or form. For example, if set to true on
a normal field, any errors for that field will be attached to the main form, not to the specific field.

error_mapping

type: array default: array()

This option allows you to modify the target of a validation error.

Imagine you have a custom method named matchingCityAndZipCode() that validates whether the
city and zip code match. Unfortunately, there is no "matchingCityAndZipCode" field in your form, so all
that Symfony can do is display the error on top of the form.

With customized error mapping, you can do better: map the error to the city field so that it displays above
it:

1
2
3
4
5
6
7
8

public function configureOptions(OptionsResolver $resolver)
{

$resolver->setDefaults(array(
'error_mapping' => array(

'matchingCityAndZipCode' => 'city',
),

));
}

Here are the rules for the left and the right side of the mapping:

• The left side contains property paths;
• If the violation is generated on a property or method of a class, its path is simply propertyName;
• If the violation is generated on an entry of an array or ArrayAccess object, the property path is

[indexName];
• You can construct nested property paths by concatenating them, separating properties by dots. For

example: addresses[work].matchingCityAndZipCode;

PDF brought to you by

generated on May 24, 2018

Chapter 39: CollectionType Field | 256

http://sensiolabs.com

Listing 39-17

Listing 39-18

Listing 39-19

Listing 39-20

• The right side contains simply the names of fields in the form.

By default, errors for any property that is not mapped will bubble up to the parent form. You can use
the dot (.) on the left side to map errors of all unmapped properties to a particular field. For instance, to
map all these errors to the city field, use:

1
2
3
4
5

$resolver->setDefaults(array(
'error_mapping' => array(

'.' => 'city',
),

));

label

type: string default: The label is "guessed" from the field name

Sets the label that will be used when rendering the field. Setting to false will suppress the label. The label
can also be directly set inside the template:

1 {{ form_label(form.name, 'Your name') }}

label_attr

type: array default: array()

Sets the HTML attributes for the <label> element, which will be used when rendering the label for the
field. It's an associative array with HTML attribute as a key. This attributes can also be directly set inside
the template:

1
2
3

{{ form_label(form.name, 'Your name', {
'label_attr': {'class': 'CUSTOM_LABEL_CLASS'}

}) }}

label_format

type: string default: null

Configures the string used as the label of the field, in case the label option was not set. This is useful
when using keyword translation messages.

If you're using keyword translation messages as labels, you often end up having multiple keyword
messages for the same label (e.g. profile_address_street, invoice_address_street). This is
because the label is build for each "path" to a field. To avoid duplicated keyword messages, you can
configure the label format to a static value, like:

1
2
3
4
5
6
7
8

// ...
$profileFormBuilder->add('address', AddressType::class, array(

'label_format' => 'form.address.%name%',
));

$invoiceFormBuilder->add('invoice', AddressType::class, array(
'label_format' => 'form.address.%name%',

));

This option is inherited by the child types. With the code above, the label of the street field of both
forms will use the form.address.street keyword message.

Two variables are available in the label format:

PDF brought to you by

generated on May 24, 2018

Chapter 39: CollectionType Field | 257

http://sensiolabs.com

%id%%id%

A unique identifier for the field, consisting of the complete path to the field and the field name (e.g.
profile_address_street);

%name%%name%

The field name (e.g. street).

The default value (null) results in a "humanized" version of the field name.

The label_format option is evaluated in the form theme. Make sure to update your templates in
case you customized form theming.

mapped

type: boolean default: true

If you wish the field to be ignored when reading or writing to the object, you can set the mapped option
to false.

required

type: boolean default: true

If true, an HTML5 required attribute2 will be rendered. The corresponding label will also render with a
required class.

This is superficial and independent from validation. At best, if you let Symfony guess your field type, then
the value of this option will be guessed from your validation information.

The required option also affects how empty data for each field is handled. For more details, see the
empty_data option.

Field Variables

Variable Type Usage

allow_add boolean The value of the allow_add option.

allow_delete boolean The value of the allow_delete option.

2. http://diveintohtml5.info/forms.html

PDF brought to you by

generated on May 24, 2018

Chapter 39: CollectionType Field | 258

http://sensiolabs.com

Listing 40-1

Chapter 40

RepeatedType Field

This is a special field "group", that creates two identical fields whose values must match (or a validation
error is thrown). The most common use is when you need the user to repeat their password or email to
verify accuracy.

Rendered as input text field by default, but see type option

Options
• first_name
• first_options
• options
• second_name
• second_options
• type

Overridden
options • error_bubbling

Inherited
options • data

• error_mapping
• invalid_message
• invalid_message_parameters
• mapped

Parent type FormType

Class RepeatedType1

Example Usage

1. https://api.symfony.com/4.0/Symfony/Component/Form/Extension/Core/Type/RepeatedType.html

PDF brought to you by

generated on May 24, 2018

Chapter 40: RepeatedType Field | 259

http://sensiolabs.com

Listing 40-2

Listing 40-3

1
2
3
4
5
6
7
8
9
10
11
12

use Symfony\Component\Form\Extension\Core\Type\RepeatedType;
use Symfony\Component\Form\Extension\Core\Type\PasswordType;
// ...

$builder->add('password', RepeatedType::class, array(
'type' => PasswordType::class,
'invalid_message' => 'The password fields must match.',
'options' => array('attr' => array('class' => 'password-field')),
'required' => true,
'first_options' => array('label' => 'Password'),
'second_options' => array('label' => 'Repeat Password'),

));

Upon a successful form submit, the value entered into both of the "password" fields becomes the data of
the password key. In other words, even though two fields are actually rendered, the end data from the
form is just the single value (usually a string) that you need.

The most important option is type, which can be any field type and determines the actual type of the
two underlying fields. The options option is passed to each of those individual fields, meaning - in this
example - any option supported by the PasswordType can be passed in this array.

Rendering

The repeated field type is actually two underlying fields, which you can render all at once, or individually.
To render all at once, use something like:

1 {{ form_row(form.password) }}

To render each field individually, use something like this:

1
2
3

{# .first and .second may vary in your use - see the note below #}
{{ form_row(form.password.first) }}
{{ form_row(form.password.second) }}

The names first and second are the default names for the two sub-fields. However, these names
can be controlled via the first_name and second_name options. If you've set these options, then use
those values instead of first and second when rendering.

Validation

One of the key features of the repeated field is internal validation (you don't need to do anything to set
this up) that forces the two fields to have a matching value. If the two fields don't match, an error will be
shown to the user.

The invalid_message is used to customize the error that will be displayed when the two fields do not
match each other.

Field Options

first_name

type: string default: first

This is the actual field name to be used for the first field. This is mostly meaningless, however, as the
actual data entered into both of the fields will be available under the key assigned to the RepeatedType

PDF brought to you by

generated on May 24, 2018

Chapter 40: RepeatedType Field | 260

http://sensiolabs.com

Listing 40-4

field itself (e.g. password). However, if you don't specify a label, this field name is used to "guess" the
label for you.

first_options

type: array default: array()

Additional options (will be merged into options below) that should be passed only to the first field. This
is especially useful for customizing the label:

1
2
3
4
5
6
7

use Symfony\Component\Form\Extension\Core\Type\RepeatedType;
// ...

$builder->add('password', RepeatedType::class, array(
'first_options' => array('label' => 'Password'),
'second_options' => array('label' => 'Repeat Password'),

));

options

type: array default: array()

This options array will be passed to each of the two underlying fields. In other words, these are the
options that customize the individual field types. For example, if the type option is set to password,
this array might contain the options always_empty or required - both options that are supported by
the PasswordType field.

second_name

type: string default: second

The same as first_name, but for the second field.

second_options

type: array default: array()

Additional options (will be merged into options above) that should be passed only to the second field.
This is especially useful for customizing the label (see first_options).

type

type: string default: Symfony\Component\Form\Extension\Core\Type\TextType

The two underlying fields will be of this field type. For example, passing PasswordType::class will
render two password fields.

Overridden Options

error_bubbling

default: false

PDF brought to you by

generated on May 24, 2018

Chapter 40: RepeatedType Field | 261

http://sensiolabs.com

Listing 40-5

Listing 40-6

Inherited Options
These options inherit from the FormType:

data

type: mixed default: Defaults to field of the underlying structure.

When you create a form, each field initially displays the value of the corresponding property of the form's
domain data (e.g. if you bind an object to the form). If you want to override this initial value for the form
or an individual field, you can set it in the data option:

1
2
3
4
5
6

use Symfony\Component\Form\Extension\Core\Type\HiddenType;
// ...

$builder->add('token', HiddenType::class, array(
'data' => 'abcdef',

));

The data option always overrides the value taken from the domain data (object) when rendering.
This means the object value is also overriden when the form edits an already persisted object, causing
it to lose its persisted value when the form is submitted.

error_mapping

type: array default: array()

This option allows you to modify the target of a validation error.

Imagine you have a custom method named matchingCityAndZipCode() that validates whether the
city and zip code match. Unfortunately, there is no "matchingCityAndZipCode" field in your form, so all
that Symfony can do is display the error on top of the form.

With customized error mapping, you can do better: map the error to the city field so that it displays above
it:

1
2
3
4
5
6
7
8

public function configureOptions(OptionsResolver $resolver)
{

$resolver->setDefaults(array(
'error_mapping' => array(

'matchingCityAndZipCode' => 'city',
),

));
}

Here are the rules for the left and the right side of the mapping:

• The left side contains property paths;
• If the violation is generated on a property or method of a class, its path is simply propertyName;
• If the violation is generated on an entry of an array or ArrayAccess object, the property path is

[indexName];
• You can construct nested property paths by concatenating them, separating properties by dots. For

example: addresses[work].matchingCityAndZipCode;
• The right side contains simply the names of fields in the form.

By default, errors for any property that is not mapped will bubble up to the parent form. You can use
the dot (.) on the left side to map errors of all unmapped properties to a particular field. For instance, to
map all these errors to the city field, use:

PDF brought to you by

generated on May 24, 2018

Chapter 40: RepeatedType Field | 262

http://sensiolabs.com

Listing 40-7

Listing 40-8

1
2
3
4
5

$resolver->setDefaults(array(
'error_mapping' => array(

'.' => 'city',
),

));

invalid_message

type: string default: This value is not valid

This is the validation error message that's used if the data entered into this field doesn't make sense (i.e.
fails validation).

This might happen, for example, if the user enters a nonsense string into a TimeType field that cannot be
converted into a real time or if the user enters a string (e.g. apple) into a number field.

Normal (business logic) validation (such as when setting a minimum length for a field) should be set
using validation messages with your validation rules (reference).

invalid_message_parameters

type: array default: array()

When setting the invalid_message option, you may need to include some variables in the string. This
can be done by adding placeholders to that option and including the variables in this option:

1
2
3
4
5

$builder->add('some_field', SomeFormType::class, array(
// ...
'invalid_message' => 'You entered an invalid value, it should include %num% letters',
'invalid_message_parameters' => array('%num%' => 6),

));

mapped

type: boolean default: true

If you wish the field to be ignored when reading or writing to the object, you can set the mapped option
to false.

PDF brought to you by

generated on May 24, 2018

Chapter 40: RepeatedType Field | 263

http://sensiolabs.com

Chapter 41

HiddenType Field

The hidden type represents a hidden input field.

Rendered as input hidden field

Overriden
options • compound

• error_bubbling
• required

Inherited
options • data

• error_mapping
• mapped
• property_path

Parent type FormType

Class HiddenType1

Overridden Options

compound

type: boolean default: false

This option specifies whether the type contains child types or not. This option is managed internally for
built-in types, so there is no need to configure it explicitly.

error_bubbling

default: true

1. https://api.symfony.com/4.0/Symfony/Component/Form/Extension/Core/Type/HiddenType.html

PDF brought to you by

generated on May 24, 2018

Chapter 41: HiddenType Field | 264

http://sensiolabs.com

Listing 41-1

Listing 41-2

Pass errors to the root form, otherwise they will not be visible.

required

default: false

Hidden fields cannot have a required attribute.

Inherited Options
These options inherit from the FormType:

data

type: mixed default: Defaults to field of the underlying structure.

When you create a form, each field initially displays the value of the corresponding property of the form's
domain data (e.g. if you bind an object to the form). If you want to override this initial value for the form
or an individual field, you can set it in the data option:

1
2
3
4
5
6

use Symfony\Component\Form\Extension\Core\Type\HiddenType;
// ...

$builder->add('token', HiddenType::class, array(
'data' => 'abcdef',

));

The data option always overrides the value taken from the domain data (object) when rendering.
This means the object value is also overriden when the form edits an already persisted object, causing
it to lose its persisted value when the form is submitted.

error_mapping

type: array default: array()

This option allows you to modify the target of a validation error.

Imagine you have a custom method named matchingCityAndZipCode() that validates whether the
city and zip code match. Unfortunately, there is no "matchingCityAndZipCode" field in your form, so all
that Symfony can do is display the error on top of the form.

With customized error mapping, you can do better: map the error to the city field so that it displays above
it:

1
2
3
4
5
6
7
8

public function configureOptions(OptionsResolver $resolver)
{

$resolver->setDefaults(array(
'error_mapping' => array(

'matchingCityAndZipCode' => 'city',
),

));
}

Here are the rules for the left and the right side of the mapping:

• The left side contains property paths;
• If the violation is generated on a property or method of a class, its path is simply propertyName;

PDF brought to you by

generated on May 24, 2018

Chapter 41: HiddenType Field | 265

http://sensiolabs.com

Listing 41-3

• If the violation is generated on an entry of an array or ArrayAccess object, the property path is
[indexName];

• You can construct nested property paths by concatenating them, separating properties by dots. For
example: addresses[work].matchingCityAndZipCode;

• The right side contains simply the names of fields in the form.

By default, errors for any property that is not mapped will bubble up to the parent form. You can use
the dot (.) on the left side to map errors of all unmapped properties to a particular field. For instance, to
map all these errors to the city field, use:

1
2
3
4
5

$resolver->setDefaults(array(
'error_mapping' => array(

'.' => 'city',
),

));

mapped

type: boolean default: true

If you wish the field to be ignored when reading or writing to the object, you can set the mapped option
to false.

property_path

type: PropertyPathInterface|string|null default: null

Fields display a property value of the form's domain object by default. When the form is submitted, the
submitted value is written back into the object.

If you want to override the property that a field reads from and writes to, you can set the
property_path option. Its default value (null) will use the field's name as the property.

PDF brought to you by

generated on May 24, 2018

Chapter 41: HiddenType Field | 266

http://sensiolabs.com

Listing 42-1

Chapter 42

ButtonType Field

A simple, non-responsive button.

Rendered as button tag

Inherited options
• attr
• disabled
• label
• translation_domain

Parent type none

Class ButtonType1

Inherited Options

The following options are defined in the BaseType2 class. The BaseType class is the parent class for
both the button type and the FormType, but it is not part of the form type tree (i.e. it cannot be used as
a form type on its own).

attr

type: array default: array()

If you want to add extra attributes to the HTML representation of the button, you can use attr option.
It's an associative array with HTML attribute as a key. This can be useful when you need to set a custom
class for the button:

1
2
3

use Symfony\Component\Form\Extension\Core\Type\ButtonType;
// ...

1. https://api.symfony.com/4.0/Symfony/Component/Form/Extension/Core/Type/ButtonType.html

2. https://api.symfony.com/4.0/Symfony/Component/Form/Extension/Core/Type/BaseType.html

PDF brought to you by

generated on May 24, 2018

Chapter 42: ButtonType Field | 267

http://sensiolabs.com

Listing 42-2

4
5
6

$builder->add('save', ButtonType::class, array(
'attr' => array('class' => 'save'),

));

disabled

type: boolean default: false

If you don't want a user to be able to click a button, you can set the disabled option to true. It will not be
possible to submit the form with this button, not even when bypassing the browser and sending a request
manually, for example with cURL.

label

type: string default: The label is "guessed" from the field name

Sets the label that will be displayed on the button. The label can also be directly set inside the template:

1 {{ form_widget(form.save, { 'label': 'Click me' }) }}

translation_domain

type: string default: messages

This is the translation domain that will be used for any labels or options that are rendered for this button.

PDF brought to you by

generated on May 24, 2018

Chapter 42: ButtonType Field | 268

http://sensiolabs.com

Listing 43-1

Chapter 43

ResetType Field

A button that resets all fields to their original values.

Rendered as input reset tag

Inherited options
• attr
• disabled
• label
• label_attr
• translation_domain

Parent type ButtonType

Class ResetType1

Inherited Options

attr

type: array default: array()

If you want to add extra attributes to the HTML representation of the button, you can use attr option.
It's an associative array with HTML attribute as a key. This can be useful when you need to set a custom
class for the button:

1
2
3
4
5
6

use Symfony\Component\Form\Extension\Core\Type\ResetType;
// ...

$builder->add('save', ResetType::class, array(
'attr' => array('class' => 'save'),

));

1. https://api.symfony.com/4.0/Symfony/Component/Form/Extension/Core/Type/ResetType.html

PDF brought to you by

generated on May 24, 2018

Chapter 43: ResetType Field | 269

http://sensiolabs.com

Listing 43-2

Listing 43-3

disabled

type: boolean default: false

If you don't want a user to be able to click a button, you can set the disabled option to true. It will not be
possible to submit the form with this button, not even when bypassing the browser and sending a request
manually, for example with cURL.

label

type: string default: The label is "guessed" from the field name

Sets the label that will be displayed on the button. The label can also be directly set inside the template:

1 {{ form_widget(form.save, { 'label': 'Click me' }) }}

label_attr

type: array default: array()

Sets the HTML attributes for the <label> element, which will be used when rendering the label for the
field. It's an associative array with HTML attribute as a key. This attributes can also be directly set inside
the template:

1
2
3

{{ form_label(form.name, 'Your name', {
'label_attr': {'class': 'CUSTOM_LABEL_CLASS'}

}) }}

translation_domain

type: string default: messages

This is the translation domain that will be used for any labels or options that are rendered for this button.

PDF brought to you by

generated on May 24, 2018

Chapter 43: ResetType Field | 270

http://sensiolabs.com

Listing 44-1

Chapter 44

SubmitType Field

A submit button.

Rendered as button submit tag

Inherited options
• attr
• disabled
• label
• label_attr
• label_format
• translation_domain
• validation_groups

Parent type ButtonType

Class SubmitType1

The Submit button has an additional method isClicked()2 that lets you check whether this button
was used to submit the form. This is especially useful when a form has multiple submit buttons:

if ($form->get('save')->isClicked()) {
// ...

}

Inherited Options

attr

type: array default: array()

1. https://api.symfony.com/4.0/Symfony/Component/Form/Extension/Core/Type/SubmitType.html

2. https://api.symfony.com/4.0/Symfony/Component/Form/ClickableInterface.html#method_isClicked

PDF brought to you by

generated on May 24, 2018

Chapter 44: SubmitType Field | 271

http://sensiolabs.com

Listing 44-2

Listing 44-3

Listing 44-4

Listing 44-5

If you want to add extra attributes to the HTML representation of the button, you can use attr option.
It's an associative array with HTML attribute as a key. This can be useful when you need to set a custom
class for the button:

1
2
3
4
5
6

use Symfony\Component\Form\Extension\Core\Type\SubmitType;
// ...

$builder->add('save', SubmitType::class, array(
'attr' => array('class' => 'save'),

));

disabled

type: boolean default: false

If you don't want a user to be able to click a button, you can set the disabled option to true. It will not be
possible to submit the form with this button, not even when bypassing the browser and sending a request
manually, for example with cURL.

label

type: string default: The label is "guessed" from the field name

Sets the label that will be displayed on the button. The label can also be directly set inside the template:

1 {{ form_widget(form.save, { 'label': 'Click me' }) }}

label_attr

type: array default: array()

Sets the HTML attributes for the <label> element, which will be used when rendering the label for the
field. It's an associative array with HTML attribute as a key. This attributes can also be directly set inside
the template:

1
2
3

{{ form_label(form.name, 'Your name', {
'label_attr': {'class': 'CUSTOM_LABEL_CLASS'}

}) }}

label_format

type: string default: null

Configures the string used as the label of the field, in case the label option was not set. This is useful
when using keyword translation messages.

If you're using keyword translation messages as labels, you often end up having multiple keyword
messages for the same label (e.g. profile_address_street, invoice_address_street). This is
because the label is build for each "path" to a field. To avoid duplicated keyword messages, you can
configure the label format to a static value, like:

1
2
3
4
5
6

// ...
$profileFormBuilder->add('address', AddressType::class, array(

'label_format' => 'form.address.%name%',
));

$invoiceFormBuilder->add('invoice', AddressType::class, array(

PDF brought to you by

generated on May 24, 2018

Chapter 44: SubmitType Field | 272

http://sensiolabs.com

Listing 44-6

7
8

'label_format' => 'form.address.%name%',
));

This option is inherited by the child types. With the code above, the label of the street field of both
forms will use the form.address.street keyword message.

Two variables are available in the label format:
%id%%id%

A unique identifier for the field, consisting of the complete path to the field and the field name (e.g.
profile_address_street);

%name%%name%

The field name (e.g. street).

The default value (null) results in a "humanized" version of the field name.

The label_format option is evaluated in the form theme. Make sure to update your templates in
case you customized form theming.

translation_domain

type: string default: messages

This is the translation domain that will be used for any labels or options that are rendered for this button.

validation_groups

type: array default: null

When your form contains multiple submit buttons, you can change the validation group based on the
button which was used to submit the form. Imagine a registration form wizard with buttons to go to the
previous or the next step:

1
2
3
4
5
6
7
8
9
10
11

use Symfony\Component\Form\Extension\Core\Type\SubmitType;
// ...

$form = $this->createFormBuilder($user)
->add('previousStep', SubmitType::class, array(

'validation_groups' => false,
))
->add('nextStep', SubmitType::class, array(

'validation_groups' => array('Registration'),
))
->getForm();

The special false ensures that no validation is performed when the previous step button is clicked.
When the second button is clicked, all constraints from the "Registration" are validated.

You can read more about this in How to Choose Validation Groups Based on the Submitted Data.

Form Variables

Variable Type Usage

clicked boolean Whether the button is clicked or not.

PDF brought to you by

generated on May 24, 2018

Chapter 44: SubmitType Field | 273

http://sensiolabs.com

Chapter 45

FormType Field

The FormType predefines a couple of options that are then available on all types for which FormType
is the parent.

Options
• action
• allow_extra_fields
• by_reference
• compound
• constraints
• data
• data_class
• empty_data
• error_bubbling
• error_mapping
• extra_fields_message
• inherit_data
• invalid_message
• invalid_message_parameters
• label_attr
• label_format
• mapped
• method
• post_max_size_message
• property_path
• required
• trim

Inherited
options • attr

• auto_initialize
• block_name
• disabled
• label

PDF brought to you by

generated on May 24, 2018

Chapter 45: FormType Field | 274

http://sensiolabs.com

Listing 45-1

Listing 45-2

• translation_domain

Parent none

Class FormType1

Field Options

action

type: string default: empty string

This option specifies where to send the form's data on submission (usually a URI). Its value is rendered
as the action attribute of the form element. An empty value is considered a same-document reference,
i.e. the form will be submitted to the same URI that rendered the form.

allow_extra_fields

type: boolean default: false

Usually, if you submit extra fields that aren't configured in your form, you'll get a "This form should not
contain extra fields." validation error.

You can silence this validation error by enabling the allow_extra_fields option on the form.

by_reference

type: boolean default: true

In most cases, if you have an author field, then you expect setAuthor() to be called on the underlying
object. In some cases, however, setAuthor() may not be called. Setting by_reference to false
ensures that the setter is called in all cases.

To explain this further, here's a simple example:

1
2
3
4
5
6
7
8
9
10
11
12
13

use Symfony\Component\Form\Extension\Core\Type\TextType;
use Symfony\Component\Form\Extension\Core\Type\EmailType;
use Symfony\Component\Form\Extension\Core\Type\FormType;
// ...

$builder = $this->createFormBuilder($article);
$builder

->add('title', TextType::class)
->add(

$builder->create('author', FormType::class, array('by_reference' => ?))
->add('name', TextType::class)
->add('email', EmailType::class)

)

If by_reference is true, the following takes place behind the scenes when you call submit() (or
handleRequest()) on the form:

$article->setTitle('...');
$article->getAuthor()->setName('...');
$article->getAuthor()->setEmail('...');

Notice that setAuthor() is not called. The author is modified by reference.

1. https://api.symfony.com/4.0/Symfony/Component/Form/Extension/Core/Type/FormType.html

PDF brought to you by

generated on May 24, 2018

Chapter 45: FormType Field | 275

http://sensiolabs.com

Listing 45-3

Listing 45-4

If you set by_reference to false, submitting looks like this:

1
2
3
4
5

$article->setTitle('...');
$author = clone $article->getAuthor();
$author->setName('...');
$author->setEmail('...');
$article->setAuthor($author);

So, all that by_reference=false really does is force the framework to call the setter on the parent
object.

Similarly, if you're using the CollectionType field where your underlying collection data is an object (like
with Doctrine's ArrayCollection), then by_reference must be set to false if you need the adder
and remover (e.g. addAuthor() and removeAuthor()) to be called.

compound

type: boolean default: true

If true this option creates the form as "compound", meaning that it can contain children and be a parent
of other forms.

Most of the time you won't need to override this option. You might want to control for it when creating
a custom form type with advanced rendering logic.

In a view a compound form is rendered as a <div> container or a <form> element (the whole form is
obviously a compound form).

Non-compound forms are always leaves in a form tree, they cannot have children.

A non-compound form is rendered as one of the html form elements: <input> (TextType, FileType,
HiddenType), <textarea> (TextareaType) or <select> (ChoiceType).

An interesting case is the ChoiceType. With expanded=false it is a non-compound form and is
rendered as a <select> tag. With expanded=true the ChoiceType becomes a compound form and
is rendered as a set of radios or checkboxes.

constraints

type: array or Constraint2 default: null

Allows you to attach one or more validation constraints to a specific field. For more information, see
Adding Validation. This option is added in the FormTypeValidatorExtension3 form extension.

data

type: mixed default: Defaults to field of the underlying structure.

When you create a form, each field initially displays the value of the corresponding property of the form's
domain data (e.g. if you bind an object to the form). If you want to override this initial value for the form
or an individual field, you can set it in the data option:

1
2
3
4
5
6

use Symfony\Component\Form\Extension\Core\Type\HiddenType;
// ...

$builder->add('token', HiddenType::class, array(
'data' => 'abcdef',

));

2. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraint.html

3. https://api.symfony.com/4.0/Symfony/Component/Form/Extension/Validator/Type/FormTypeValidatorExtension.html

PDF brought to you by

generated on May 24, 2018

Chapter 45: FormType Field | 276

http://sensiolabs.com

Listing 45-5

Listing 45-6

The data option always overrides the value taken from the domain data (object) when rendering.
This means the object value is also overriden when the form edits an already persisted object, causing
it to lose its persisted value when the form is submitted.

data_class

type: string

This option is used to set the appropriate data mapper to be used by the form, so you can use it for any
form field type which requires an object:

1
2
3
4
5
6
7

use App\Entity\Media;
use App\Form\MediaType;
// ...

$builder->add('media', MediaType::class, array(
'data_class' => Media::class,

));

empty_data

type: mixed

The actual default value of this option depends on other field options:

• If data_class is set and required is true, then new $data_class();
• If data_class is set and required is false, then null;
• If data_class is not set and compound is true, then array() (empty array);
• If data_class is not set and compound is false, then '' (empty string).

This option determines what value the field will return when the submitted value is empty (or missing).
It does not set an initial value if none is provided when the form is rendered in a view.

This means it helps you handling form submission with blank fields. For example, if you want the name
field to be explicitly set to John Doe when no value is selected, you can do it like this:

$builder->add('name', null, array(
'required' => false,
'empty_data' => 'John Doe',

));

This will still render an empty text box, but upon submission the John Doe value will be set. Use the
data or placeholder options to show this initial value in the rendered form.

If a form is compound, you can set empty_data as an array, object or closure. See the How to Configure
empty Data for a Form Class article for more details about these options.

If you want to set the empty_data option for your entire form class, see the How to Configure empty
Data for a Form Class article.

Form data transformers will still be applied to the empty_data value. This means that an empty
string will be cast to null. Use a custom data transformer if you explicitly want to return the empty
string.

PDF brought to you by

generated on May 24, 2018

Chapter 45: FormType Field | 277

http://sensiolabs.com

Listing 45-7

Listing 45-8

error_bubbling

type: boolean default: false unless the form is compound

If true, any errors for this field will be passed to the parent field or form. For example, if set to true on
a normal field, any errors for that field will be attached to the main form, not to the specific field.

error_mapping

type: array default: array()

This option allows you to modify the target of a validation error.

Imagine you have a custom method named matchingCityAndZipCode() that validates whether the
city and zip code match. Unfortunately, there is no "matchingCityAndZipCode" field in your form, so all
that Symfony can do is display the error on top of the form.

With customized error mapping, you can do better: map the error to the city field so that it displays above
it:

1
2
3
4
5
6
7
8

public function configureOptions(OptionsResolver $resolver)
{

$resolver->setDefaults(array(
'error_mapping' => array(

'matchingCityAndZipCode' => 'city',
),

));
}

Here are the rules for the left and the right side of the mapping:

• The left side contains property paths;
• If the violation is generated on a property or method of a class, its path is simply propertyName;
• If the violation is generated on an entry of an array or ArrayAccess object, the property path is

[indexName];
• You can construct nested property paths by concatenating them, separating properties by dots. For

example: addresses[work].matchingCityAndZipCode;
• The right side contains simply the names of fields in the form.

By default, errors for any property that is not mapped will bubble up to the parent form. You can use
the dot (.) on the left side to map errors of all unmapped properties to a particular field. For instance, to
map all these errors to the city field, use:

1
2
3
4
5

$resolver->setDefaults(array(
'error_mapping' => array(

'.' => 'city',
),

));

extra_fields_message

type: string default: This form should not contain extra fields.

This is the validation error message that's used if the submitted form data contains one or more fields
that are not part of the form definition. The placeholder {{ extra_fields }} can be used to display
a comma separated list of the submitted extra field names.

inherit_data

type: boolean default: false

PDF brought to you by

generated on May 24, 2018

Chapter 45: FormType Field | 278

http://sensiolabs.com

Listing 45-9

Listing 45-10

This option determines if the form will inherit data from its parent form. This can be useful if you
have a set of fields that are duplicated across multiple forms. See How to Reduce Code Duplication with
"inherit_data".

When a field has the inherit_data option set, it uses the data of the parent form as is. This means
that Data Transformers won't be applied to that field.

invalid_message

type: string default: This value is not valid

This is the validation error message that's used if the data entered into this field doesn't make sense (i.e.
fails validation).

This might happen, for example, if the user enters a nonsense string into a TimeType field that cannot be
converted into a real time or if the user enters a string (e.g. apple) into a number field.

Normal (business logic) validation (such as when setting a minimum length for a field) should be set
using validation messages with your validation rules (reference).

invalid_message_parameters

type: array default: array()

When setting the invalid_message option, you may need to include some variables in the string. This
can be done by adding placeholders to that option and including the variables in this option:

1
2
3
4
5

$builder->add('some_field', SomeFormType::class, array(
// ...
'invalid_message' => 'You entered an invalid value, it should include %num% letters',
'invalid_message_parameters' => array('%num%' => 6),

));

label_attr

type: array default: array()

Sets the HTML attributes for the <label> element, which will be used when rendering the label for the
field. It's an associative array with HTML attribute as a key. This attributes can also be directly set inside
the template:

1
2
3

{{ form_label(form.name, 'Your name', {
'label_attr': {'class': 'CUSTOM_LABEL_CLASS'}

}) }}

label_format

type: string default: null

Configures the string used as the label of the field, in case the label option was not set. This is useful
when using keyword translation messages.

If you're using keyword translation messages as labels, you often end up having multiple keyword
messages for the same label (e.g. profile_address_street, invoice_address_street). This is
because the label is build for each "path" to a field. To avoid duplicated keyword messages, you can
configure the label format to a static value, like:

PDF brought to you by

generated on May 24, 2018

Chapter 45: FormType Field | 279

http://sensiolabs.com

Listing 45-11 1
2
3
4
5
6
7
8

// ...
$profileFormBuilder->add('address', AddressType::class, array(

'label_format' => 'form.address.%name%',
));

$invoiceFormBuilder->add('invoice', AddressType::class, array(
'label_format' => 'form.address.%name%',

));

This option is inherited by the child types. With the code above, the label of the street field of both
forms will use the form.address.street keyword message.

Two variables are available in the label format:
%id%%id%

A unique identifier for the field, consisting of the complete path to the field and the field name (e.g.
profile_address_street);

%name%%name%

The field name (e.g. street).

The default value (null) results in a "humanized" version of the field name.

The label_format option is evaluated in the form theme. Make sure to update your templates in
case you customized form theming.

mapped

type: boolean default: true

If you wish the field to be ignored when reading or writing to the object, you can set the mapped option
to false.

method

type: string default: POST

This option specifies the HTTP method used to submit the form's data. Its value is rendered as the
method attribute of the form element and is used to decide whether to process the form submission in
the handleRequest() method after submission. Possible values are:

• POST
• GET
• PUT
• DELETE
• PATCH

When the method is PUT, PATCH, or DELETE, Symfony will automatically render a _method
hidden field in your form. This is used to "fake" these HTTP methods, as they're not supported on
standard browsers. This can be useful when using method routing requirements.

The PATCH method allows submitting partial data. In other words, if the submitted form data is
missing certain fields, those will be ignored and the default values (if any) will be used. With all other
HTTP methods, if the submitted form data is missing some fields, those fields are set to null.

PDF brought to you by

generated on May 24, 2018

Chapter 45: FormType Field | 280

http://sensiolabs.com

post_max_size_message

type: string default: The uploaded file was too large. Please try to upload a
smaller file.

This is the validation error message that's used if submitted POST form data exceeds php.ini's
post_max_size directive. The {{ max }} placeholder can be used to display the allowed size.

Validating the post_max_size only happens on the root form.

property_path

type: PropertyPathInterface|string|null default: null

Fields display a property value of the form's domain object by default. When the form is submitted, the
submitted value is written back into the object.

If you want to override the property that a field reads from and writes to, you can set the
property_path option. Its default value (null) will use the field's name as the property.

required

type: boolean default: true

If true, an HTML5 required attribute4 will be rendered. The corresponding label will also render with a
required class.

This is superficial and independent from validation. At best, if you let Symfony guess your field type, then
the value of this option will be guessed from your validation information.

The required option also affects how empty data for each field is handled. For more details, see the
empty_data option.

trim

type: boolean default: true

If true, the whitespace of the submitted string value will be stripped via the trim5 function when the data
is bound. This guarantees that if a value is submitted with extra whitespace, it will be removed before the
value is merged back onto the underlying object.

Inherited Options

The following options are defined in the BaseType6 class. The BaseType class is the parent class for
both the form type and the ButtonType, but it is not part of the form type tree (i.e. it cannot be used as a
form type on its own).

4. http://diveintohtml5.info/forms.html

5. https://secure.php.net/manual/en/function.trim.php

6. https://api.symfony.com/4.0/Symfony/Component/Form/Extension/Core/Type/BaseType.html

PDF brought to you by

generated on May 24, 2018

Chapter 45: FormType Field | 281

http://sensiolabs.com

Listing 45-12

Listing 45-13

attr

type: array default: array()

If you want to add extra attributes to an HTML field representation you can use the attr option. It's an
associative array with HTML attributes as keys. This can be useful when you need to set a custom class
for some widget:

$builder->add('body', TextareaType::class, array(
'attr' => array('class' => 'tinymce'),

));

auto_initialize

type: boolean default: true

An internal option: sets whether the form should be initialized automatically. For all fields, this option
should only be true for root forms. You won't need to change this option and probably won't need to
worry about it.

block_name

type: string default: the form's name (see Knowing which block to customize)

Allows you to override the block name used to render the form type. Useful for example if you have
multiple instances of the same form and you need to personalize the rendering of the forms individually.

disabled

type: boolean default: false

If you don't want a user to modify the value of a field, you can set the disabled option to true. Any
submitted value will be ignored.

label

type: string default: The label is "guessed" from the field name

Sets the label that will be used when rendering the field. Setting to false will suppress the label. The label
can also be directly set inside the template:

1 {{ form_label(form.name, 'Your name') }}

translation_domain

type: string, null or false default: null

This is the translation domain that will be used for any label or option that is rendered for this field. Use
null to reuse the translation domain of the parent form (or the default domain of the translator for the
root form). Use false to disable translations.

PDF brought to you by

generated on May 24, 2018

Chapter 45: FormType Field | 282

http://sensiolabs.com

Chapter 46

Validation Constraints Reference

The Validator is designed to validate objects against constraints. In real life, a constraint could be: "The
cake must not be burned". In Symfony, constraints are similar: They are assertions that a condition is
true.

Supported Constraints
The following constraints are natively available in Symfony:

Basic Constraints

These are the basic constraints: use them to assert very basic things about the value of properties or the
return value of methods on your object.

• NotBlank
• Blank
• NotNull
• IsNull
• IsTrue
• IsFalse
• Type

String Constraints

• Email
• Length
• Url
• Regex
• Ip
• Uuid

PDF brought to you by

generated on May 24, 2018

Chapter 46: Validation Constraints Reference | 283

http://sensiolabs.com

Number Constraints

• Range

Comparison Constraints

• EqualTo
• NotEqualTo
• IdenticalTo
• NotIdenticalTo
• LessThan
• LessThanOrEqual
• GreaterThan
• GreaterThanOrEqual

Date Constraints

• Date
• DateTime
• Time

Collection Constraints

• Choice
• Collection
• Count
• UniqueEntity
• Language
• Locale
• Country

File Constraints

• File
• Image

Financial and other Number Constraints

• Bic
• CardScheme
• Currency
• Luhn
• Iban
• Isbn
• Issn

Other Constraints

• Callback
• Expression
• All
• UserPassword
• Valid

PDF brought to you by

generated on May 24, 2018

Chapter 46: Validation Constraints Reference | 284

http://sensiolabs.com

Listing 47-1

Listing 47-2

Chapter 47

NotBlank

Validates that a value is not blank - meaning not equal to a blank string, a blank array or null:

if (false === $value || (empty($value) && '0' != $value)) {
// validation will fail

}

To force that a value is simply not equal to null, see the NotNull constraint.

Applies to property or method

Options
• message
• payload

Class NotBlank1

Validator NotBlankValidator2

Basic Usage

If you wanted to ensure that the firstName property of an Author class were not blank, you could do
the following:

1
2
3
4
5
6
7
8
9
10

// src/Entity/Author.php
namespace App\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Author
{

/**
* @Assert\NotBlank()
*/

1. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/NotBlank.html
2. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/NotBlankValidator.html

PDF brought to you by

generated on May 24, 2018

Chapter 47: NotBlank | 285

http://sensiolabs.com

11
12

protected $firstName;
}

Options

message

type: string default: This value should not be blank.

This is the message that will be shown if the value is blank.

payload

type: mixed default: null

This option can be used to attach arbitrary domain-specific data to a constraint. The configured payload
is not used by the Validator component, but its processing is completely up to you.

For example, you may want to use several error levels to present failed constraints differently in the front-
end depending on the severity of the error.

PDF brought to you by

generated on May 24, 2018

Chapter 47: NotBlank | 286

http://sensiolabs.com

Listing 48-1

Listing 48-2

Chapter 48

Blank

Validates that a value is blank - meaning equal to an empty string or null:

if ('' !== $value && null !== $value) {
// validation will fail

}

To force that a value strictly be equal to null, see the IsNull constraint.

To force that a value is not blank, see NotBlank. But be careful as NotBlank is not strictly the opposite
of Blank.

Applies to property or method

Options
• message
• payload

Class Blank1

Validator BlankValidator2

Basic Usage

If, for some reason, you wanted to ensure that the firstName property of an Author class were blank,
you could do the following:

1
2
3
4
5
6
7

// src/Entity/Author.php
namespace App\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Author
{

1. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/Blank.html
2. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/BlankValidator.html

PDF brought to you by

generated on May 24, 2018

Chapter 48: Blank | 287

http://sensiolabs.com

8
9
10
11
12

/**
* @Assert\Blank()
*/
protected $firstName;

}

Options

message

type: string default: This value should be blank.

This is the message that will be shown if the value is not blank.

payload

type: mixed default: null

This option can be used to attach arbitrary domain-specific data to a constraint. The configured payload
is not used by the Validator component, but its processing is completely up to you.

For example, you may want to use several error levels to present failed constraints differently in the front-
end depending on the severity of the error.

PDF brought to you by

generated on May 24, 2018

Chapter 48: Blank | 288

http://sensiolabs.com

Listing 49-1

Chapter 49

NotNull

Validates that a value is not strictly equal to null. To ensure that a value is simply not blank (not a blank
string), see the NotBlank constraint.

Applies to property or method

Options
• message
• payload

Class NotNull1

Validator NotNullValidator2

Basic Usage

If you wanted to ensure that the firstName property of an Author class were not strictly equal to
null, you would:

1
2
3
4
5
6
7
8
9
10
11
12

// src/Entity/Author.php
namespace App\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Author
{

/**
* @Assert\NotNull()
*/
protected $firstName;

}

1. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/NotNull.html
2. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/NotNullValidator.html

PDF brought to you by

generated on May 24, 2018

Chapter 49: NotNull | 289

http://sensiolabs.com

Options

message

type: string default: This value should not be null.

This is the message that will be shown if the value is null.

payload

type: mixed default: null

This option can be used to attach arbitrary domain-specific data to a constraint. The configured payload
is not used by the Validator component, but its processing is completely up to you.

For example, you may want to use several error levels to present failed constraints differently in the front-
end depending on the severity of the error.

PDF brought to you by

generated on May 24, 2018

Chapter 49: NotNull | 290

http://sensiolabs.com

Listing 50-1

Chapter 50

IsNull

Validates that a value is exactly equal to null. To force that a property is simply blank (blank string or
null), see the Blank constraint. To ensure that a property is not null, see NotNull.

Also see NotNull.

Applies to property or method

Options
• message
• payload

Class IsNull1

Validator IsNullValidator2

Basic Usage

If, for some reason, you wanted to ensure that the firstName property of an Author class exactly equal
to null, you could do the following:

1
2
3
4
5
6
7
8
9
10
11
12

// src/Entity/Author.php
namespace App\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Author
{

/**
* @Assert\IsNull()
*/
protected $firstName;

}

1. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/IsNull.html
2. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/IsNullValidator.html

PDF brought to you by

generated on May 24, 2018

Chapter 50: IsNull | 291

http://sensiolabs.com

Options

message

type: string default: This value should be null.

This is the message that will be shown if the value is not null.

payload

type: mixed default: null

This option can be used to attach arbitrary domain-specific data to a constraint. The configured payload
is not used by the Validator component, but its processing is completely up to you.

For example, you may want to use several error levels to present failed constraints differently in the front-
end depending on the severity of the error.

PDF brought to you by

generated on May 24, 2018

Chapter 50: IsNull | 292

http://sensiolabs.com

Listing 51-1

Chapter 51

IsTrue

Validates that a value is true. Specifically, this checks to see if the value is exactly true, exactly the
integer 1, or exactly the string "1".

Also see IsFalse.

Applies to property or method

Options
• message
• payload

Class True1

Validator TrueValidator2

Basic Usage

This constraint can be applied to properties (e.g. a termsAccepted property on a registration model)
or to a "getter" method. It's most powerful in the latter case, where you can assert that a method returns
a true value. For example, suppose you have the following method:

1
2
3
4
5
6
7
8
9
10
11
12

// src/Entity/Author.php
namespace App\Entity;

class Author
{

protected $token;

public function isTokenValid()
{

return $this->token == $this->generateToken();
}

}

1. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/True.html
2. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/TrueValidator.html

PDF brought to you by

generated on May 24, 2018

Chapter 51: IsTrue | 293

http://sensiolabs.com

Listing 51-2

Then you can constrain this method with IsTrue.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

// src/Entity/Author.php
namespace App\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Author
{

protected $token;

/**
* @Assert\IsTrue(message="The token is invalid")
*/
public function isTokenValid()
{

return $this->token == $this->generateToken();
}

}

If the isTokenValid() returns false, the validation will fail.

Options

message

type: string default: This value should be true.

This message is shown if the underlying data is not true.

payload

type: mixed default: null

This option can be used to attach arbitrary domain-specific data to a constraint. The configured payload
is not used by the Validator component, but its processing is completely up to you.

For example, you may want to use several error levels to present failed constraints differently in the front-
end depending on the severity of the error.

PDF brought to you by

generated on May 24, 2018

Chapter 51: IsTrue | 294

http://sensiolabs.com

Listing 52-1

Listing 52-2

Chapter 52

IsFalse

Validates that a value is false. Specifically, this checks to see if the value is exactly false, exactly the
integer 0, or exactly the string "0".

Also see IsTrue.

Applies to property or method

Options
• message
• payload

Class IsFalse1

Validator IsFalseValidator2

Basic Usage

The IsFalse constraint can be applied to a property or a "getter" method, but is most commonly useful
in the latter case. For example, suppose that you want to guarantee that some state property is not in a
dynamic invalidStates array. First, you'd create a "getter" method:

1
2
3
4
5
6
7
8

protected $state;

protected $invalidStates = array();

public function isStateInvalid()
{

return in_array($this->state, $this->invalidStates);
}

In this case, the underlying object is only valid if the isStateInvalid() method returns false:

1. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/IsFalse.html
2. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/IsFalseValidator.html

PDF brought to you by

generated on May 24, 2018

Chapter 52: IsFalse | 295

http://sensiolabs.com

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

// src/Entity/Author.php
namespace App\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Author
{

/**
* @Assert\IsFalse(
* message = "You've entered an invalid state."
*)
*/
public function isStateInvalid()
{

// ...
}

}

Options

message

type: string default: This value should be false.

This message is shown if the underlying data is not false.

payload

type: mixed default: null

This option can be used to attach arbitrary domain-specific data to a constraint. The configured payload
is not used by the Validator component, but its processing is completely up to you.

For example, you may want to use several error levels to present failed constraints differently in the front-
end depending on the severity of the error.

PDF brought to you by

generated on May 24, 2018

Chapter 52: IsFalse | 296

http://sensiolabs.com

Listing 53-1

Chapter 53

Type

Validates that a value is of a specific data type. For example, if a variable should be an array, you can use
this constraint with the array type option to validate this.

Applies to property or method

Options
• type
• message
• payload

Class Type1

Validator TypeValidator2

Basic Usage

This will check if firstName is of type string and that age is an integer.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

// src/Entity/Author.php
namespace App\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Author
{

/**
* @Assert\Type("string")
*/
protected $firstName;

/**
* @Assert\Type(
* type="integer",
* message="The value {{ value }} is not a valid {{ type }}."

1. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/Type.html
2. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/TypeValidator.html

PDF brought to you by

generated on May 24, 2018

Chapter 53: Type | 297

http://sensiolabs.com

17
18
19
20

*)
*/
protected $age;

}

Options

type

type: string [default option]

This required option is the fully qualified class name or one of the PHP datatypes as determined by PHP's
is_() functions.

• array3

• bool4

• callable5

• float6

• double7

• int8

• integer9

• long10

• null11

• numeric12

• object13

• real14

• resource15

• scalar16

• string17

Also, you can use ctype_() functions from corresponding built-in PHP extension18. Consider a list of
ctype functions19:

• alnum20

• alpha21

• cntrl22

• digit23

• graph24

• lower25

3. https://secure.php.net/manual/en/function.is-array.php
4. https://secure.php.net/manual/en/function.is-bool.php
5. https://secure.php.net/manual/en/function.is-callable.php
6. https://secure.php.net/manual/en/function.is-float.php
7. https://secure.php.net/manual/en/function.is-double.php
8. https://secure.php.net/manual/en/function.is-int.php
9. https://secure.php.net/manual/en/function.is-integer.php
10. https://secure.php.net/manual/en/function.is-long.php
11. https://secure.php.net/manual/en/function.is-null.php
12. https://secure.php.net/manual/en/function.is-numeric.php
13. https://secure.php.net/manual/en/function.is-object.php
14. https://secure.php.net/manual/en/function.is-real.php
15. https://secure.php.net/manual/en/function.is-resource.php
16. https://secure.php.net/manual/en/function.is-scalar.php
17. https://secure.php.net/manual/en/function.is-string.php

18. https://php.net/book.ctype.php

19. https://php.net/ref.ctype.php
20. https://secure.php.net/manual/en/function.ctype-alnum.php
21. https://secure.php.net/manual/en/function.ctype-alpha.php
22. https://secure.php.net/manual/en/function.ctype-cntrl.php
23. https://secure.php.net/manual/en/function.ctype-digit.php
24. https://secure.php.net/manual/en/function.ctype-graph.php

PDF brought to you by

generated on May 24, 2018

Chapter 53: Type | 298

http://sensiolabs.com

• print26

• punct27

• space28

• upper29

• xdigit30

Make sure that the proper locale31 is set before using one of these.

message

type: string default: This value should be of type {{ type }}.

The message if the underlying data is not of the given type.

payload

type: mixed default: null

This option can be used to attach arbitrary domain-specific data to a constraint. The configured payload
is not used by the Validator component, but its processing is completely up to you.

For example, you may want to use several error levels to present failed constraints differently in the front-
end depending on the severity of the error.

25. https://secure.php.net/manual/en/function.ctype-lower.php
26. https://secure.php.net/manual/en/function.ctype-print.php
27. https://secure.php.net/manual/en/function.ctype-punct.php
28. https://secure.php.net/manual/en/function.ctype-space.php
29. https://secure.php.net/manual/en/function.ctype-upper.php
30. https://secure.php.net/manual/en/function.ctype-xdigit.php

31. https://secure.php.net/manual/en/function.setlocale.php

PDF brought to you by

generated on May 24, 2018

Chapter 53: Type | 299

http://sensiolabs.com

Listing 54-1

Chapter 54

Email

Validates that a value is a valid email address. The underlying value is cast to a string before being
validated.

Applies to property or method

Options
• strict
• message
• checkMX
• checkHost
• payload

Class Email1

Validator EmailValidator2

Basic Usage

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

// src/Entity/Author.php
namespace App\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Author
{

/**
* @Assert\Email(
* message = "The email '{{ value }}' is not a valid email.",
* checkMX = true
*)
*/
protected $email;

}

1. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/Email.html
2. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/EmailValidator.html

PDF brought to you by

generated on May 24, 2018

Chapter 54: Email | 300

http://sensiolabs.com

Options

strict

type: boolean default: false

When false, the email will be validated against a simple regular expression. If true, then the egulias/email-
validator3 library is required to perform an RFC compliant validation.

message

type: string default: This value is not a valid email address.

This message is shown if the underlying data is not a valid email address.

checkMX

type: boolean default: false

If true, then the checkdnsrr4 PHP function will be used to check the validity of the MX record of the
host of the given email.

checkHost

type: boolean default: false

If true, then the checkdnsrr5 PHP function will be used to check the validity of the MX or the A or the
AAAA record of the host of the given email.

payload

type: mixed default: null

This option can be used to attach arbitrary domain-specific data to a constraint. The configured payload
is not used by the Validator component, but its processing is completely up to you.

For example, you may want to use several error levels to present failed constraints differently in the front-
end depending on the severity of the error.

3. https://packagist.org/packages/egulias/email-validator

4. https://secure.php.net/manual/en/function.checkdnsrr.php

5. https://secure.php.net/manual/en/function.checkdnsrr.php

PDF brought to you by

generated on May 24, 2018

Chapter 54: Email | 301

http://sensiolabs.com

Listing 55-1

Chapter 55

Length

Validates that a given string length is between some minimum and maximum value.

null and empty strings are not handled by this constraint. You need to also add the NotBlank or
NotNull constraints to validate against these.

Applies to property or method

Options
• min
• max
• charset
• minMessage
• maxMessage
• exactMessage
• payload

Class Length1

Validator LengthValidator2

Basic Usage

To verify that the firstName field length of a class is between "2" and "50", you might add the
following:

1
2
3
4
5

// src/Entity/Participant.php
namespace App\Entity;

use Symfony\Component\Validator\Constraints as Assert;

1. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/Length.html
2. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/LengthValidator.html

PDF brought to you by

generated on May 24, 2018

Chapter 55: Length | 302

http://sensiolabs.com

6
7
8
9
10
11
12
13
14
15
16
17

class Participant
{

/**
* @Assert\Length(
* min = 2,
* max = 50,
* minMessage = "Your first name must be at least {{ limit }} characters long",
* maxMessage = "Your first name cannot be longer than {{ limit }} characters"
*)
*/
protected $firstName;

}

Options

min

type: integer

This required option is the "min" length value. Validation will fail if the given value's length is less than
this min value.

It is important to notice that NULL values and empty strings are considered valid no matter if the
constraint required a minimum length. Validators are triggered only if the value is not blank.

max

type: integer

This required option is the "max" length value. Validation will fail if the given value's length is greater
than this max value.

charset

type: string default: UTF-8

The charset to be used when computing value's length. The grapheme_strlen3 PHP function is used if
available. If not, the mb_strlen4 PHP function is used if available. If neither are available, the strlen5

PHP function is used.

minMessage

type: string default: This value is too short. It should have {{ limit }}
characters or more.

The message that will be shown if the underlying value's length is less than the min option.

maxMessage

type: string default: This value is too long. It should have {{ limit }}
characters or less.

The message that will be shown if the underlying value's length is more than the max option.

3. https://secure.php.net/manual/en/function.grapheme-strlen.php

4. https://secure.php.net/manual/en/function.mb-strlen.php

5. https://secure.php.net/manual/en/function.strlen.php

PDF brought to you by

generated on May 24, 2018

Chapter 55: Length | 303

http://sensiolabs.com

exactMessage

type: string default: This value should have exactly {{ limit }} characters.

The message that will be shown if min and max values are equal and the underlying value's length is not
exactly this value.

payload

type: mixed default: null

This option can be used to attach arbitrary domain-specific data to a constraint. The configured payload
is not used by the Validator component, but its processing is completely up to you.

For example, you may want to use several error levels to present failed constraints differently in the front-
end depending on the severity of the error.

PDF brought to you by

generated on May 24, 2018

Chapter 55: Length | 304

http://sensiolabs.com

Listing 56-1

Chapter 56

Url

Validates that a value is a valid URL string.

Applies to property or method

Options
• message
• protocols
• payload
• checkDNS
• dnsMessage

Class Url1

Validator UrlValidator2

Basic Usage

1
2
3
4
5
6
7
8
9
10
11
12

// src/Entity/Author.php
namespace App\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Author
{

/**
* @Assert\Url()
*/
protected $bioUrl;

}

1. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/Url.html
2. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/UrlValidator.html

PDF brought to you by

generated on May 24, 2018

Chapter 56: Url | 305

http://sensiolabs.com

Listing 56-2

Listing 56-3

Options

message

type: string default: This value is not a valid URL.

This message is shown if the URL is invalid.

1
2
3
4
5
6
7
8
9
10
11
12
13
14

// src/Entity/Author.php
namespace App\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Author
{

/**
* @Assert\Url(
* message = "The url '{{ value }}' is not a valid url",
*)
*/
protected $bioUrl;

}

protocols

type: array default: array('http', 'https')

The protocols considered to be valid for the URL. For example, if you also consider the ftp:// type
URLs to be valid, redefine the protocols array, listing http, https, and also ftp.

1
2
3
4
5
6
7
8
9
10
11
12
13
14

// src/Entity/Author.php
namespace App\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Author
{

/**
* @Assert\Url(
* protocols = {"http", "https", "ftp"}
*)
*/
protected $bioUrl;

}

payload

type: mixed default: null

This option can be used to attach arbitrary domain-specific data to a constraint. The configured payload
is not used by the Validator component, but its processing is completely up to you.

For example, you may want to use several error levels to present failed constraints differently in the front-
end depending on the severity of the error.

checkDNS

type: boolean default: false

PDF brought to you by

generated on May 24, 2018

Chapter 56: Url | 306

http://sensiolabs.com

Listing 56-4

Listing 56-5

By default, this constraint just validates the syntax of the given URL. If you also need to check whether
the associated host exists, set the checkDNS option to the value of any of the CHECK_DNS_TYPE_*
constants in the Url3 class:

1
2
3
4
5
6
7
8
9
10
11
12
13
14

// src/Entity/Author.php
namespace App\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Author
{

/**
* @Assert\Url(
* checkDNS = "ANY"
*)
*/
protected $bioUrl;

}

This option uses the checkdnsrr4 PHP function to check the validity of the DNS record corresponding
to the host associated with the given URL.

dnsMessage

type: string default: The host could not be resolved.

This message is shown when the checkDNS option is set to true and the DNS check failed.

1
2
3
4
5
6
7
8
9
10
11
12
13
14

// src/Entity/Author.php
namespace App\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Author
{

/**
* @Assert\Url(
* dnsMessage = "The host '{{ value }}' could not be resolved."
*)
*/
protected $bioUrl;

}

3. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/Url.html

4. https://secure.php.net/manual/en/function.checkdnsrr.php

PDF brought to you by

generated on May 24, 2018

Chapter 56: Url | 307

http://sensiolabs.com

Listing 57-1

Chapter 57

Regex

Validates that a value matches a regular expression.

Applies to property or method

Options
• pattern
• htmlPattern
• match
• message
• payload

Class Regex1

Validator RegexValidator2

Basic Usage

Suppose you have a description field and you want to verify that it begins with a valid word character.
The regular expression to test for this would be /^\w+/, indicating that you're looking for at least one or
more word characters at the beginning of your string:

1
2
3
4
5
6
7
8
9
10
11
12

// src/Entity/Author.php
namespace App\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Author
{

/**
* @Assert\Regex("/^\w+/")
*/
protected $description;

}

1. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/Regex.html
2. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/RegexValidator.html

PDF brought to you by

generated on May 24, 2018

Chapter 57: Regex | 308

http://sensiolabs.com

Listing 57-2

Listing 57-3

Alternatively, you can set the match option to false in order to assert that a given string does not match.
In the following example, you'll assert that the firstName field does not contain any numbers and give
it a custom message:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

// src/Entity/Author.php
namespace App\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Author
{

/**
* @Assert\Regex(
* pattern="/\d/",
* match=false,
* message="Your name cannot contain a number"
*)
*/
protected $firstName;

}

Options

pattern

type: string [default option]

This required option is the regular expression pattern that the input will be matched against. By default,
this validator will fail if the input string does not match this regular expression (via the preg_match3

PHP function). However, if match is set to false, then validation will fail if the input string does match
this pattern.

htmlPattern

type: string|boolean default: null

This option specifies the pattern to use in the HTML5 pattern attribute. You usually don't need
to specify this option because by default, the constraint will convert the pattern given in the pattern
option into an HTML5 compatible pattern. This means that the delimiters are removed (e.g. /[a-z]+/
becomes [a-z]+).

However, there are some other incompatibilities between both patterns which cannot be fixed by the
constraint. For instance, the HTML5 pattern attribute does not support flags. If you have a pattern like
/[a-z]+/i, you need to specify the HTML5 compatible pattern in the htmlPattern option:

1
2
3
4
5
6
7
8
9
10
11
12
13

// src/Entity/Author.php
namespace App\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Author
{

/**
* @Assert\Regex(
* pattern = "/^[a-z]+$/i",
* htmlPattern = "^[a-zA-Z]+$"
*)
*/

3. https://secure.php.net/manual/en/function.preg-match.php

PDF brought to you by

generated on May 24, 2018

Chapter 57: Regex | 309

http://sensiolabs.com

14
15

protected $name;
}

Setting htmlPattern to false will disable client side validation.

match

type: boolean default: true

If true (or not set), this validator will pass if the given string matches the given pattern regular
expression. However, when this option is set to false, the opposite will occur: validation will pass only
if the given string does not match the pattern regular expression.

message

type: string default: This value is not valid.

This is the message that will be shown if this validator fails.

payload

type: mixed default: null

This option can be used to attach arbitrary domain-specific data to a constraint. The configured payload
is not used by the Validator component, but its processing is completely up to you.

For example, you may want to use several error levels to present failed constraints differently in the front-
end depending on the severity of the error.

PDF brought to you by

generated on May 24, 2018

Chapter 57: Regex | 310

http://sensiolabs.com

Listing 58-1

Chapter 58

Ip

Validates that a value is a valid IP address. By default, this will validate the value as IPv4, but a number
of different options exist to validate as IPv6 and many other combinations.

Applies to property or method

Options
• version
• message
• payload

Class Ip1

Validator IpValidator2

Basic Usage

1
2
3
4
5
6
7
8
9
10
11
12

// src/Entity/Author.php
namespace App\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Author
{

/**
* @Assert\Ip
*/
protected $ipAddress;

}

1. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/Ip.html
2. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/IpValidator.html

PDF brought to you by

generated on May 24, 2018

Chapter 58: Ip | 311

http://sensiolabs.com

Options

version

type: string default: 4

This determines exactly how the IP address is validated and can take one of a variety of different values:

All ranges
44

Validates for IPv4 addresses

66

Validates for IPv6 addresses

allall

Validates all IP formats

No private ranges
4_no_priv4_no_priv

Validates for IPv4 but without private IP ranges

6_no_priv6_no_priv

Validates for IPv6 but without private IP ranges

all_no_privall_no_priv

Validates for all IP formats but without private IP ranges

No reserved ranges
4_no_res4_no_res

Validates for IPv4 but without reserved IP ranges

6_no_res6_no_res

Validates for IPv6 but without reserved IP ranges

all_no_resall_no_res

Validates for all IP formats but without reserved IP ranges

Only public ranges
4_public4_public

Validates for IPv4 but without private and reserved ranges

6_public6_public

Validates for IPv6 but without private and reserved ranges

all_publicall_public

Validates for all IP formats but without private and reserved ranges

message

type: string default: This is not a valid IP address.

This message is shown if the string is not a valid IP address.

payload

type: mixed default: null

PDF brought to you by

generated on May 24, 2018

Chapter 58: Ip | 312

http://sensiolabs.com

This option can be used to attach arbitrary domain-specific data to a constraint. The configured payload
is not used by the Validator component, but its processing is completely up to you.

For example, you may want to use several error levels to present failed constraints differently in the front-
end depending on the severity of the error.

PDF brought to you by

generated on May 24, 2018

Chapter 58: Ip | 313

http://sensiolabs.com

Listing 59-1

Chapter 59

Uuid

Validates that a value is a valid Universally unique identifier (UUID)1 per RFC 41222. By default, this
will validate the format according to the RFC's guidelines, but this can be relaxed to accept non-
standard UUIDs that other systems (like PostgreSQL) accept. UUID versions can also be restricted using
a whitelist.

Applies to property or method

Options
• message
• strict
• versions
• payload

Class Uuid3

Validator UuidValidator4

Basic Usage

1
2
3
4
5

config/validator/validation.yaml
App\Entity\File:

properties:
identifier:

- Uuid: ~

1. http://en.wikipedia.org/wiki/Universally_unique_identifier

2. http://tools.ietf.org/html/rfc4122
3. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/Uuid.html
4. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/UuidValidator.html

PDF brought to you by

generated on May 24, 2018

Chapter 59: Uuid | 314

http://sensiolabs.com

Options

message

type: string default: This is not a valid UUID.

This message is shown if the string is not a valid UUID.

strict

type: boolean default: true

If this option is set to true the constraint will check if the UUID is formatted per the RFC's input format
rules: 216fff40-98d9-11e3-a5e2-0800200c9a66. Setting this to false will allow alternate input
formats like:

• 216f-ff40-98d9-11e3-a5e2-0800-200c-9a66

• {216fff40-98d9-11e3-a5e2-0800200c9a66}

• 216fff4098d911e3a5e20800200c9a66

versions

type: int[] default: [1,2,3,4,5]

This option can be used to only allow specific UUID versions5. Valid versions are 1 - 5. The following
PHP constants can also be used:

• Uuid::V1_MAC

• Uuid::V2_DCE

• Uuid::V3_MD5

• Uuid::V4_RANDOM

• Uuid::V5_SHA1

All five versions are allowed by default.

payload

type: mixed default: null

This option can be used to attach arbitrary domain-specific data to a constraint. The configured payload
is not used by the Validator component, but its processing is completely up to you.

For example, you may want to use several error levels to present failed constraints differently in the front-
end depending on the severity of the error.

5. http://en.wikipedia.org/wiki/Universally_unique_identifier#Variants_and_versions

PDF brought to you by

generated on May 24, 2018

Chapter 59: Uuid | 315

http://sensiolabs.com

Listing 60-1

Chapter 60

Range

Validates that a given number is between some minimum and maximum number.

Applies to property or method

Options
• min
• max
• minMessage
• maxMessage
• invalidMessage
• payload

Class Range1

Validator RangeValidator2

Basic Usage
To verify that the "height" field of a class is between "120" and "180", you might add the following:

1
2
3
4
5
6
7
8
9
10
11
12
13
14

// src/Entity/Participant.php
namespace App\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Participant
{

/**
* @Assert\Range(
* min = 120,
* max = 180,
* minMessage = "You must be at least {{ limit }}cm tall to enter",
* maxMessage = "You cannot be taller than {{ limit }}cm to enter"
*)

1. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/Range.html
2. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/RangeValidator.html

PDF brought to you by

generated on May 24, 2018

Chapter 60: Range | 316

http://sensiolabs.com

Listing 60-2

Listing 60-3

Listing 60-4

15
16
17

*/
protected $height;

}

Date Ranges

This constraint can be used to compare DateTime objects against date ranges. The minimum and
maximum date of the range should be given as any date string accepted by the DateTime constructor3. For
example, you could check that a date must lie within the current year like this:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

// src/Entity/Event.php
namespace App\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Event
{

/**
* @Assert\Range(
* min = "first day of January",
* max = "first day of January next year"
*)
*/
protected $startDate;

}

Be aware that PHP will use the server's configured timezone to interpret these dates. If you want to fix
the timezone, append it to the date string:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

// src/Entity/Event.php
namespace App\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Event
{

/**
* @Assert\Range(
* min = "first day of January UTC",
* max = "first day of January next year UTC"
*)
*/
protected $startDate;

}

The DateTime class also accepts relative dates or times. For example, you can check that a delivery date
starts within the next five hours like this:

1
2
3
4
5
6
7
8
9
10
11
12
13

// src/Entity/Order.php
namespace App\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Order
{

/**
* @Assert\Range(
* min = "now",
* max = "+5 hours"
*)
*/

3. https://php.net/manual/en/datetime.formats.php

PDF brought to you by

generated on May 24, 2018

Chapter 60: Range | 317

http://sensiolabs.com

14
15

protected $deliveryDate;
}

Options

min

type: integer

This required option is the "min" value. Validation will fail if the given value is less than this min value.

max

type: integer

This required option is the "max" value. Validation will fail if the given value is greater than this max
value.

minMessage

type: string default: This value should be {{ limit }} or more.

The message that will be shown if the underlying value is less than the min option.

maxMessage

type: string default: This value should be {{ limit }} or less.

The message that will be shown if the underlying value is more than the max option.

invalidMessage

type: string default: This value should be a valid number.

The message that will be shown if the underlying value is not a number (per the is_numeric4 PHP
function).

payload

type: mixed default: null

This option can be used to attach arbitrary domain-specific data to a constraint. The configured payload
is not used by the Validator component, but its processing is completely up to you.

For example, you may want to use several error levels to present failed constraints differently in the front-
end depending on the severity of the error.

4. https://php.net/manual/en/function.is-numeric.php

PDF brought to you by

generated on May 24, 2018

Chapter 60: Range | 318

http://sensiolabs.com

Listing 61-1

Chapter 61

EqualTo

Validates that a value is equal to another value, defined in the options. To force that a value is not equal,
see NotEqualTo.

This constraint compares using ==, so 3 and "3" are considered equal. Use IdenticalTo to compare
with ===.

Applies to property or method

Options
• value
• message
• payload
• propertyPath

Class EqualTo1

Validator EqualToValidator2

Basic Usage

If you want to ensure that the firstName of a Person class is equal to Mary and that the age is 20,
you could do the following:

1
2
3
4
5
6
7
8

// src/Entity/Person.php
namespace App\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Person
{

/**

1. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/EqualTo.html
2. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/EqualToValidator.html

PDF brought to you by

generated on May 24, 2018

Chapter 61: EqualTo | 319

http://sensiolabs.com

9
10
11
12
13
14
15
16
17
18
19

* @Assert\EqualTo("Mary")
*/
protected $firstName;

/**
* @Assert\EqualTo(
* value = 20
*)
*/
protected $age;

}

Options

value

type: mixed [default option]

This option is required. It defines the value to compare to. It can be a string, number or object.

message

type: string default: This value should be equal to {{ compared_value }}.

This is the message that will be shown if the value is not equal.

payload

type: mixed default: null

This option can be used to attach arbitrary domain-specific data to a constraint. The configured payload
is not used by the Validator component, but its processing is completely up to you.

For example, you may want to use several error levels to present failed constraints differently in the front-
end depending on the severity of the error.

propertyPath

type: string

It defines the object property whose value is used to make the comparison.

For example, if you want to compare the $endDate property of some object with regard to the
$startDate property of the same object, use propertyPath="startDate" in the comparison
constraint of $endDate.

PDF brought to you by

generated on May 24, 2018

Chapter 61: EqualTo | 320

http://sensiolabs.com

Listing 62-1

Chapter 62

NotEqualTo

Validates that a value is not equal to another value, defined in the options. To force that a value is equal,
see EqualTo.

This constraint compares using !=, so 3 and "3" are considered equal. Use NotIdenticalTo to
compare with !==.

Applies to property or method

Options
• value
• message
• payload
• propertyPath

Class NotEqualTo1

Validator NotEqualToValidator2

Basic Usage

If you want to ensure that the firstName of a Person is not equal to Mary and that the age of a
Person class is not 15, you could do the following:

1
2
3
4
5
6
7

// src/Entity/Person.php
namespace App\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Person
{

1. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/NotEqualTo.html
2. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/NotEqualToValidator.html

PDF brought to you by

generated on May 24, 2018

Chapter 62: NotEqualTo | 321

http://sensiolabs.com

8
9
10
11
12
13
14
15
16
17
18
19

/**
* @Assert\NotEqualTo("Mary")
*/
protected $firstName;

/**
* @Assert\NotEqualTo(
* value = 15
*)
*/
protected $age;

}

Options

value

type: mixed [default option]

This option is required. It defines the value to compare to. It can be a string, number or object.

message

type: string default: This value should not be equal to {{ compared_value }}.

This is the message that will be shown if the value is equal.

payload

type: mixed default: null

This option can be used to attach arbitrary domain-specific data to a constraint. The configured payload
is not used by the Validator component, but its processing is completely up to you.

For example, you may want to use several error levels to present failed constraints differently in the front-
end depending on the severity of the error.

propertyPath

type: string

It defines the object property whose value is used to make the comparison.

For example, if you want to compare the $endDate property of some object with regard to the
$startDate property of the same object, use propertyPath="startDate" in the comparison
constraint of $endDate.

PDF brought to you by

generated on May 24, 2018

Chapter 62: NotEqualTo | 322

http://sensiolabs.com

Listing 63-1

Chapter 63

IdenticalTo

Validates that a value is identical to another value, defined in the options. To force that a value is not
identical, see NotIdenticalTo.

This constraint compares using ===, so 3 and "3" are not considered equal. Use EqualTo to
compare with ==.

Applies to property or method

Options
• value
• message
• payload
• propertyPath

Class IdenticalTo1

Validator IdenticalToValidator2

Basic Usage
The following constraints ensure that:

• firstName of Person class is equal to Mary and is a string
• age is equal to``20`` and is of type integer

1
2
3
4
5

// src/Entity/Person.php
namespace App\Entity;

use Symfony\Component\Validator\Constraints as Assert;

1. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/IdenticalTo.html
2. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/IdenticalToValidator.html

PDF brought to you by

generated on May 24, 2018

Chapter 63: IdenticalTo | 323

http://sensiolabs.com

6
7
8
9
10
11
12
13
14
15
16
17
18
19

class Person
{

/**
* @Assert\IdenticalTo("Mary")
*/
protected $firstName;

/**
* @Assert\IdenticalTo(
* value = 20
*)
*/
protected $age;

}

Options

value

type: mixed [default option]

This option is required. It defines the value to compare to. It can be a string, number or object.

message

type: string default: This value should be identical to {{ compared_value_type
}} {{ compared_value }}.

This is the message that will be shown if the value is not identical.

payload

type: mixed default: null

This option can be used to attach arbitrary domain-specific data to a constraint. The configured payload
is not used by the Validator component, but its processing is completely up to you.

For example, you may want to use several error levels to present failed constraints differently in the front-
end depending on the severity of the error.

propertyPath

type: string

It defines the object property whose value is used to make the comparison.

For example, if you want to compare the $endDate property of some object with regard to the
$startDate property of the same object, use propertyPath="startDate" in the comparison
constraint of $endDate.

PDF brought to you by

generated on May 24, 2018

Chapter 63: IdenticalTo | 324

http://sensiolabs.com

Listing 64-1

Chapter 64

NotIdenticalTo

Validates that a value is not identical to another value, defined in the options. To force that a value is
identical, see IdenticalTo.

This constraint compares using !==, so 3 and "3" are considered not equal. Use NotEqualTo to
compare with !=.

Applies to property or method

Options
• value
• message
• payload
• propertyPath

Class NotIdenticalTo1

Validator NotIdenticalToValidator2

Basic Usage
The following constraints ensure that:

• firstName of Person is not equal to Mary or not of the same type
• age of Person class is not equal to 15 or not of the same type

1
2
3
4
5

// src/Entity/Person.php
namespace App\Entity;

use Symfony\Component\Validator\Constraints as Assert;

1. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/NotIdenticalTo.html
2. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/NotIdenticalToValidator.html

PDF brought to you by

generated on May 24, 2018

Chapter 64: NotIdenticalTo | 325

http://sensiolabs.com

6
7
8
9
10
11
12
13
14
15
16
17
18
19

class Person
{

/**
* @Assert\NotIdenticalTo("Mary")
*/
protected $firstName;

/**
* @Assert\NotIdenticalTo(
* value = 15
*)
*/
protected $age;

}

Options

value

type: mixed [default option]

This option is required. It defines the value to compare to. It can be a string, number or object.

message

type: string default: This value should not be identical to {{
compared_value_type }} {{ compared_value }}.

This is the message that will be shown if the value is identical.

payload

type: mixed default: null

This option can be used to attach arbitrary domain-specific data to a constraint. The configured payload
is not used by the Validator component, but its processing is completely up to you.

For example, you may want to use several error levels to present failed constraints differently in the front-
end depending on the severity of the error.

propertyPath

type: string

It defines the object property whose value is used to make the comparison.

For example, if you want to compare the $endDate property of some object with regard to the
$startDate property of the same object, use propertyPath="startDate" in the comparison
constraint of $endDate.

PDF brought to you by

generated on May 24, 2018

Chapter 64: NotIdenticalTo | 326

http://sensiolabs.com

Listing 65-1

Chapter 65

LessThan

Validates that a value is less than another value, defined in the options. To force that a value is less
than or equal to another value, see LessThanOrEqual. To force a value is greater than another value, see
GreaterThan.

Applies to property or method

Options
• value
• message
• payload
• propertyPath

Class LessThan1

Validator LessThanValidator2

Basic Usage
The following constraints ensure that:

• the number of siblings of a Person is less than 5

• age is less than 80

1
2
3
4
5
6
7
8
9

// src/Entity/Person.php
namespace App\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Person
{

/**

1. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/LessThan.html
2. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/LessThanValidator.html

PDF brought to you by

generated on May 24, 2018

Chapter 65: LessThan | 327

http://sensiolabs.com

Listing 65-2

Listing 65-3

Listing 65-4

10
11
12
13
14
15
16
17
18
19
20

* @Assert\LessThan(5)
*/
protected $siblings;

/**
* @Assert\LessThan(
* value = 80
*)
*/
protected $age;

}

Comparing Dates

This constraint can be used to compare DateTime objects against any date string accepted by the
DateTime constructor3. For example, you could check that a date must be in the past like this:

1
2
3
4
5
6
7
8
9
10
11
12

// src/Entity/Person.php
namespace App\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Person
{

/**
* @Assert\LessThan("today")
*/
protected $dateOfBirth;

}

Be aware that PHP will use the server's configured timezone to interpret these dates. If you want to fix
the timezone, append it to the date string:

1
2
3
4
5
6
7
8
9
10
11
12

// src/Entity/Person.php
namespace App\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Person
{

/**
* @Assert\LessThan("today UTC")
*/
protected $dateOfBirth;

}

The DateTime class also accepts relative dates or times. For example, you can check that a person must
be at least 18 years old like this:

1
2
3
4
5
6
7
8
9
10
11
12

// src/Entity/Person.php
namespace App\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Person
{

/**
* @Assert\LessThan("-18 years")
*/
protected $dateOfBirth;

}

3. https://php.net/manual/en/datetime.formats.php

PDF brought to you by

generated on May 24, 2018

Chapter 65: LessThan | 328

http://sensiolabs.com

Options

value

type: mixed [default option]

This option is required. It defines the value to compare to. It can be a string, number or object.

message

type: string default: This value should be less than {{ compared_value }}.

This is the message that will be shown if the value is not less than the comparison value.

payload

type: mixed default: null

This option can be used to attach arbitrary domain-specific data to a constraint. The configured payload
is not used by the Validator component, but its processing is completely up to you.

For example, you may want to use several error levels to present failed constraints differently in the front-
end depending on the severity of the error.

propertyPath

type: string

It defines the object property whose value is used to make the comparison.

For example, if you want to compare the $endDate property of some object with regard to the
$startDate property of the same object, use propertyPath="startDate" in the comparison
constraint of $endDate.

PDF brought to you by

generated on May 24, 2018

Chapter 65: LessThan | 329

http://sensiolabs.com

Listing 66-1

Chapter 66

LessThanOrEqual

Validates that a value is less than or equal to another value, defined in the options. To force that a value
is less than another value, see LessThan.

Applies to property or method

Options
• value
• message
• payload
• propertyPath

Class LessThanOrEqual1

Validator LessThanOrEqualValidator2

Basic Usage
The following constraints ensure that:

• the number of siblings of a Person is less than or equal to 5

• the age is less than or equal to 80

1
2
3
4
5
6
7
8
9
10
11

// src/Entity/Person.php
namespace App\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Person
{

/**
* @Assert\LessThanOrEqual(5)
*/
protected $siblings;

1. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/LessThanOrEqual.html
2. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/LessThanOrEqualValidator.html

PDF brought to you by

generated on May 24, 2018

Chapter 66: LessThanOrEqual | 330

http://sensiolabs.com

Listing 66-2

Listing 66-3

Listing 66-4

12
13
14
15
16
17
18
19

/**
* @Assert\LessThanOrEqual(
* value = 80
*)
*/
protected $age;

}

Comparing Dates

This constraint can be used to compare DateTime objects against any date string accepted by the
DateTime constructor3. For example, you could check that a date must be today or in the past like this:

1
2
3
4
5
6
7
8
9
10
11
12

// src/Entity/Person.php
namespace App\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Person
{

/**
* @Assert\LessThanOrEqual("today")
*/
protected $age;

}

Be aware that PHP will use the server's configured timezone to interpret these dates. If you want to fix
the timezone, append it to the date string:

1
2
3
4
5
6
7
8
9
10
11
12

// src/Entity/Person.php
namespace App\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Person
{

/**
* @Assert\LessThanOrEqual("today UTC")
*/
protected $age;

}

The DateTime class also accepts relative dates or times. For example, you can check that a person must
be at least 18 years old like this:

1
2
3
4
5
6
7
8
9
10
11
12

// src/Entity/Person.php
namespace App\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Person
{

/**
* @Assert\LessThanOrEqual("-18 years")
*/
protected $age;

}

3. https://php.net/manual/en/datetime.formats.php

PDF brought to you by

generated on May 24, 2018

Chapter 66: LessThanOrEqual | 331

http://sensiolabs.com

Options

value

type: mixed [default option]

This option is required. It defines the value to compare to. It can be a string, number or object.

message

type: string default: This value should be less than or equal to {{
compared_value }}.

This is the message that will be shown if the value is not less than or equal to the comparison value.

payload

type: mixed default: null

This option can be used to attach arbitrary domain-specific data to a constraint. The configured payload
is not used by the Validator component, but its processing is completely up to you.

For example, you may want to use several error levels to present failed constraints differently in the front-
end depending on the severity of the error.

propertyPath

type: string

It defines the object property whose value is used to make the comparison.

For example, if you want to compare the $endDate property of some object with regard to the
$startDate property of the same object, use propertyPath="startDate" in the comparison
constraint of $endDate.

PDF brought to you by

generated on May 24, 2018

Chapter 66: LessThanOrEqual | 332

http://sensiolabs.com

Listing 67-1

Chapter 67

GreaterThan

Validates that a value is greater than another value, defined in the options. To force that a value is greater
than or equal to another value, see GreaterThanOrEqual. To force a value is less than another value, see
LessThan.

Applies to property or method

Options
• value
• message
• payload
• propertyPath

Class GreaterThan1

Validator GreaterThanValidator2

Basic Usage
The following constraints ensure that:

• the number of siblings of a Person is greater than 5

• the age of a Person class is greater than 18

1
2
3
4
5
6
7
8
9

// src/Entity/Person.php
namespace App\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Person
{

/**

1. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/GreaterThan.html
2. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/GreaterThanValidator.html

PDF brought to you by

generated on May 24, 2018

Chapter 67: GreaterThan | 333

http://sensiolabs.com

Listing 67-2

Listing 67-3

Listing 67-4

10
11
12
13
14
15
16
17
18
19
20

* @Assert\GreaterThan(5)
*/
protected $siblings;

/**
* @Assert\GreaterThan(
* value = 18
*)
*/
protected $age;

}

Comparing Dates

This constraint can be used to compare DateTime objects against any date string accepted by the
DateTime constructor3. For example, you could check that a date must at least be the next day:

1
2
3
4
5
6
7
8
9
10
11
12

// src/Entity/Order.php
namespace App\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Order
{

/**
* @Assert\GreaterThan("today")
*/
protected $deliveryDate;

}

Be aware that PHP will use the server's configured timezone to interpret these dates. If you want to fix
the timezone, append it to the date string:

1
2
3
4
5
6
7
8
9
10
11
12

// src/Entity/Order.php
namespace App\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Order
{

/**
* @Assert\GreaterThan("today UTC")
*/
protected $deliveryDate;

}

The DateTime class also accepts relative dates or times. For example, you can check that the above
delivery date starts at least five hours after the current time:

1
2
3
4
5
6
7
8
9
10
11
12

// src/Entity/Order.php
namespace App\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Order
{

/**
* @Assert\GreaterThan("+5 hours")
*/
protected $deliveryDate;

}

3. https://php.net/manual/en/datetime.formats.php

PDF brought to you by

generated on May 24, 2018

Chapter 67: GreaterThan | 334

http://sensiolabs.com

Options

value

type: mixed [default option]

This option is required. It defines the value to compare to. It can be a string, number or object.

message

type: string default: This value should be greater than {{ compared_value }}.

This is the message that will be shown if the value is not greater than the comparison value.

payload

type: mixed default: null

This option can be used to attach arbitrary domain-specific data to a constraint. The configured payload
is not used by the Validator component, but its processing is completely up to you.

For example, you may want to use several error levels to present failed constraints differently in the front-
end depending on the severity of the error.

propertyPath

type: string

It defines the object property whose value is used to make the comparison.

For example, if you want to compare the $endDate property of some object with regard to the
$startDate property of the same object, use propertyPath="startDate" in the comparison
constraint of $endDate.

PDF brought to you by

generated on May 24, 2018

Chapter 67: GreaterThan | 335

http://sensiolabs.com

Listing 68-1

Chapter 68

GreaterThanOrEqual

Validates that a value is greater than or equal to another value, defined in the options. To force that a
value is greater than another value, see GreaterThan.

Applies to property or method

Options
• value
• message
• payload
• propertyPath

Class GreaterThanOrEqual1

Validator GreaterThanOrEqualValidator2

Basic Usage
The following constraints ensure that:

• the number of siblings of a Person is greater than or equal to 5

• the age of a Person class is greater than or equal to 18

1
2
3
4
5
6
7
8
9
10
11

// src/Entity/Person.php
namespace App\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Person
{

/**
* @Assert\GreaterThanOrEqual(5)
*/
protected $siblings;

1. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/GreaterThanOrEqual.html
2. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/GreaterThanOrEqualValidator.html

PDF brought to you by

generated on May 24, 2018

Chapter 68: GreaterThanOrEqual | 336

http://sensiolabs.com

Listing 68-2

Listing 68-3

Listing 68-4

12
13
14
15
16
17
18
19

/**
* @Assert\GreaterThanOrEqual(
* value = 18
*)
*/
protected $age;

}

Comparing Dates

This constraint can be used to compare DateTime objects against any date string accepted by the
DateTime constructor3. For example, you could check that a date must at least be the current day:

1
2
3
4
5
6
7
8
9
10
11
12

// src/Entity/Order.php
namespace App\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Order
{

/**
* @Assert\GreaterThanOrEqual("today")
*/
protected $deliveryDate;

}

Be aware that PHP will use the server's configured timezone to interpret these dates. If you want to fix
the timezone, append it to the date string:

1
2
3
4
5
6
7
8
9
10
11
12

// src/Entity/Order.php
namespace App\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Order
{

/**
* @Assert\GreaterThanOrEqual("today UTC")
*/
protected $deliveryDate;

}

The DateTime class also accepts relative dates or times. For example, you can check that the above
delivery date starts at least five hours after the current time:

1
2
3
4
5
6
7
8
9
10
11
12

// src/Entity/Order.php
namespace App\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Order
{

/**
* @Assert\GreaterThanOrEqual("+5 hours")
*/
protected $deliveryDate;

}

3. https://php.net/manual/en/datetime.formats.php

PDF brought to you by

generated on May 24, 2018

Chapter 68: GreaterThanOrEqual | 337

http://sensiolabs.com

Options

value

type: mixed [default option]

This option is required. It defines the value to compare to. It can be a string, number or object.

message

type: string default: This value should be greater than or equal to {{
compared_value }}.

This is the message that will be shown if the value is not greater than or equal to the comparison value.

payload

type: mixed default: null

This option can be used to attach arbitrary domain-specific data to a constraint. The configured payload
is not used by the Validator component, but its processing is completely up to you.

For example, you may want to use several error levels to present failed constraints differently in the front-
end depending on the severity of the error.

propertyPath

type: string

It defines the object property whose value is used to make the comparison.

For example, if you want to compare the $endDate property of some object with regard to the
$startDate property of the same object, use propertyPath="startDate" in the comparison
constraint of $endDate.

PDF brought to you by

generated on May 24, 2018

Chapter 68: GreaterThanOrEqual | 338

http://sensiolabs.com

Listing 69-1

Chapter 69

Date

Validates that a value is a valid date, meaning either a DateTime object or a string (or an object that can
be cast into a string) that follows a valid YYYY-MM-DD format.

Applies to property or method

Options
• message
• payload

Class Date1

Validator DateValidator2

Basic Usage

1
2
3
4
5
6
7
8
9
10
11
12

// src/Entity/Author.php
namespace App\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Author
{

/**
* @Assert\Date()
*/
protected $birthday;

}

1. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/Date.html
2. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/DateValidator.html

PDF brought to you by

generated on May 24, 2018

Chapter 69: Date | 339

http://sensiolabs.com

Options

message

type: string default: This value is not a valid date.

This message is shown if the underlying data is not a valid date.

payload

type: mixed default: null

This option can be used to attach arbitrary domain-specific data to a constraint. The configured payload
is not used by the Validator component, but its processing is completely up to you.

For example, you may want to use several error levels to present failed constraints differently in the front-
end depending on the severity of the error.

PDF brought to you by

generated on May 24, 2018

Chapter 69: Date | 340

http://sensiolabs.com

Listing 70-1

Chapter 70

DateTime

Validates that a value is a valid "datetime", meaning either a DateTime object or a string (or an object
that can be cast into a string) that follows a specific format.

Applies to property or method

Options
• format
• message
• payload

Class DateTime1

Validator DateTimeValidator2

Basic Usage

1
2
3
4
5
6
7
8
9
10
11
12

// src/Entity/Author.php
namespace App\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Author
{

/**
* @Assert\DateTime()
*/
protected $createdAt;

}

1. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/DateTime.html
2. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/DateTimeValidator.html

PDF brought to you by

generated on May 24, 2018

Chapter 70: DateTime | 341

http://sensiolabs.com

Options

format

type: string default: Y-m-d H:i:s

This option allows to validate a custom date format. See DateTime::createFromFormat()3 for
formatting options.

message

type: string default: This value is not a valid datetime.

This message is shown if the underlying data is not a valid datetime.

payload

type: mixed default: null

This option can be used to attach arbitrary domain-specific data to a constraint. The configured payload
is not used by the Validator component, but its processing is completely up to you.

For example, you may want to use several error levels to present failed constraints differently in the front-
end depending on the severity of the error.

3. https://secure.php.net/manual/en/datetime.createfromformat.php

PDF brought to you by

generated on May 24, 2018

Chapter 70: DateTime | 342

http://sensiolabs.com

Listing 71-1

Chapter 71

Time

Validates that a value is a valid time, meaning an object implementing DateTimeInterface or a string
(or an object that can be cast into a string) that follows a valid HH:MM:SS format.

Applies to property or method

Options
• message
• payload

Class Time1

Validator TimeValidator2

Basic Usage

Suppose you have an Event class, with a startAt field that is the time of the day when the event starts:

1
2
3
4
5
6
7
8
9
10
11
12

// src/Entity/Event.php
namespace App\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Event
{

/**
* @Assert\Time()
*/
protected $startsAt;

}

1. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/Time.html
2. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/TimeValidator.html

PDF brought to you by

generated on May 24, 2018

Chapter 71: Time | 343

http://sensiolabs.com

Options

message

type: string default: This value is not a valid time.

This message is shown if the underlying data is not a valid time.

payload

type: mixed default: null

This option can be used to attach arbitrary domain-specific data to a constraint. The configured payload
is not used by the Validator component, but its processing is completely up to you.

For example, you may want to use several error levels to present failed constraints differently in the front-
end depending on the severity of the error.

PDF brought to you by

generated on May 24, 2018

Chapter 71: Time | 344

http://sensiolabs.com

Listing 72-1

Chapter 72

Choice

This constraint is used to ensure that the given value is one of a given set of valid choices. It can also be
used to validate that each item in an array of items is one of those valid choices.

Applies to property or method

Options
• choices
• callback
• multiple
• min
• max
• message
• multipleMessage
• minMessage
• maxMessage
• strict
• payload

Class Choice1

Validator ChoiceValidator2

Basic Usage
The basic idea of this constraint is that you supply it with an array of valid values (this can be done in
several ways) and it validates that the value of the given property exists in that array.

If your valid choice list is simple, you can pass them in directly via the choices option:

1
2
3

// src/Entity/Author.php
namespace App\Entity;

1. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/Choice.html
2. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/ChoiceValidator.html

PDF brought to you by

generated on May 24, 2018

Chapter 72: Choice | 345

http://sensiolabs.com

Listing 72-2

Listing 72-3

Listing 72-4

4
5
6
7
8
9
10
11
12
13
14
15
16
17

use Symfony\Component\Validator\Constraints as Assert;

class Author
{

/**
* @Assert\Choice({"New York", "Berlin", "Tokyo"})
*/
protected $city;

/**
* @Assert\Choice(choices={"fiction", "non-fiction"}, message="Choose a valid genre.")
*/
protected $genre;

}

Supplying the Choices with a Callback Function
You can also use a callback function to specify your options. This is useful if you want to keep your
choices in some central location so that, for example, you can easily access those choices for validation
or for building a select form element:

1
2
3
4
5
6
7
8
9
10

// src/Entity/Author.php
namespace App\Entity;

class Author
{

public static function getGenres()
{

return array('fiction', 'non-fiction');
}

}

You can pass the name of this method to the callback option of the Choice constraint.

1
2
3
4
5
6
7
8
9
10
11
12

// src/Entity/Author.php
namespace App\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Author
{

/**
* @Assert\Choice(callback="getGenres")
*/
protected $genre;

}

If the callback is stored in a different class and is static, for example Util, you can pass the class name
and the method as an array.

1
2
3
4
5
6
7
8
9
10
11
12

// src/Entity/Author.php
namespace App\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Author
{

/**
* @Assert\Choice(callback={"Util", "getGenres"})
*/
protected $genre;

}

PDF brought to you by

generated on May 24, 2018

Chapter 72: Choice | 346

http://sensiolabs.com

Available Options

choices

type: array [default option]

A required option (unless callback is specified) - this is the array of options that should be considered in
the valid set. The input value will be matched against this array.

callback

type: string|array|Closure

This is a callback method that can be used instead of the choices option to return the choices array. See
Supplying the Choices with a Callback Function for details on its usage.

multiple

type: boolean default: false

If this option is true, the input value is expected to be an array instead of a single, scalar value. The
constraint will check that each value of the input array can be found in the array of valid choices. If even
one of the input values cannot be found, the validation will fail.

min

type: integer

If the multiple option is true, then you can use the min option to force at least XX number of values to
be selected. For example, if min is 3, but the input array only contains 2 valid items, the validation will
fail.

max

type: integer

If the multiple option is true, then you can use the max option to force no more than XX number of
values to be selected. For example, if max is 3, but the input array contains 4 valid items, the validation
will fail.

message

type: string default: The value you selected is not a valid choice.

This is the message that you will receive if the multiple option is set to false and the underlying value
is not in the valid array of choices.

multipleMessage

type: string default: One or more of the given values is invalid.

This is the message that you will receive if the multiple option is set to true and one of the values on
the underlying array being checked is not in the array of valid choices.

PDF brought to you by

generated on May 24, 2018

Chapter 72: Choice | 347

http://sensiolabs.com

minMessage

type: string default: You must select at least {{ limit }} choices.

This is the validation error message that's displayed when the user chooses too few choices per the min
option.

maxMessage

type: string default: You must select at most {{ limit }} choices.

This is the validation error message that's displayed when the user chooses too many options per the max
option.

strict

type: boolean default: true

The validator will also check the type of the input value. Specifically, this value is passed to as the third
argument to the PHP in_array3 method when checking to see if a value is in the valid choices array.

payload

type: mixed default: null

This option can be used to attach arbitrary domain-specific data to a constraint. The configured payload
is not used by the Validator component, but its processing is completely up to you.

For example, you may want to use several error levels to present failed constraints differently in the front-
end depending on the severity of the error.

3. https://secure.php.net/manual/en/function.in-array.php

PDF brought to you by

generated on May 24, 2018

Chapter 72: Choice | 348

http://sensiolabs.com

Listing 73-1

Chapter 73

Collection

This constraint is used when the underlying data is a collection (i.e. an array or an object that implements
Traversable and ArrayAccess), but you'd like to validate different keys of that collection in different
ways. For example, you might validate the email key using the Email constraint and the inventory
key of the collection with the Range constraint.

This constraint can also make sure that certain collection keys are present and that extra keys are not
present.

Applies to property or method

Options
• fields
• allowExtraFields
• extraFieldsMessage
• allowMissingFields
• missingFieldsMessage
• payload

Class Collection1

Validator CollectionValidator2

Basic Usage

The Collection constraint allows you to validate the different keys of a collection individually. Take
the following example:

1
2
3
4

// src/Entity/Author.php
namespace App\Entity;

class Author

1. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/Collection.html
2. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/CollectionValidator.html

PDF brought to you by

generated on May 24, 2018

Chapter 73: Collection | 349

http://sensiolabs.com

Listing 73-2

5
6
7
8
9
10
11
12
13
14
15

{
protected $profileData = array(

'personal_email' => '...',
'short_bio' => '...',

);

public function setProfileData($key, $value)
{

$this->profileData[$key] = $value;
}

}

To validate that the personal_email element of the profileData array property is a valid email
address and that the short_bio element is not blank but is no longer than 100 characters in length, you
would do the following:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

// src/Entity/Author.php
namespace App\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Author
{

/**
* @Assert\Collection(
* fields = {
* "personal_email" = @Assert\Email,
* "short_bio" = {
* @Assert\NotBlank(),
* @Assert\Length(
* max = 100,
* maxMessage = "Your short bio is too long!"
*)
* }
* },
* allowMissingFields = true
*)
*/
protected $profileData = array(

'personal_email' => '...',
'short_bio' => '...',

);
}

Presence and Absence of Fields

By default, this constraint validates more than simply whether or not the individual fields in the collection
pass their assigned constraints. In fact, if any keys of a collection are missing or if there are any
unrecognized keys in the collection, validation errors will be thrown.

If you would like to allow for keys to be absent from the collection or if you would like "extra" keys
to be allowed in the collection, you can modify the allowMissingFields and allowExtraFields options
respectively. In the above example, the allowMissingFields option was set to true, meaning that
if either of the personal_email or short_bio elements were missing from the $personalData
property, no validation error would occur.

Required and Optional Field Constraints

Constraints for fields within a collection can be wrapped in the Required or Optional constraint to
control whether they should always be applied (Required) or only applied when the field is present
(Optional).

PDF brought to you by

generated on May 24, 2018

Chapter 73: Collection | 350

http://sensiolabs.com

Listing 73-3

For instance, if you want to require that the personal_email field of the profileData array is not
blank and is a valid email but the alternate_email field is optional but must be a valid email if
supplied, you can do the following:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

// src/Entity/Author.php
namespace App\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Author
{

/**
* @Assert\Collection(
* fields={
* "personal_email" = @Assert\Required({@Assert\NotBlank, @Assert\Email}),
* "alternate_email" = @Assert\Optional(@Assert\Email)
* }
*)
*/
protected $profileData = array('personal_email');

}

Even without allowMissingFields set to true, you can now omit the alternate_email property
completely from the profileData array, since it is Optional. However, if the personal_email
field does not exist in the array, the NotBlank constraint will still be applied (since it is wrapped in
Required) and you will receive a constraint violation.

Options

fields

type: array [default option]

This option is required and is an associative array defining all of the keys in the collection and, for each
key, exactly which validator(s) should be executed against that element of the collection.

allowExtraFields

type: boolean default: false

If this option is set to false and the underlying collection contains one or more elements that are not
included in the fields option, a validation error will be returned. If set to true, extra fields are ok.

extraFieldsMessage

type: string default: This field was not expected.

The message shown if allowExtraFields is false and an extra field is detected.

allowMissingFields

type: boolean default: false

If this option is set to false and one or more fields from the fields option are not present in the
underlying collection, a validation error will be returned. If set to true, it's ok if some fields in the fields
option are not present in the underlying collection.

PDF brought to you by

generated on May 24, 2018

Chapter 73: Collection | 351

http://sensiolabs.com

missingFieldsMessage

type: string default: This field is missing.

The message shown if allowMissingFields is false and one or more fields are missing from the underlying
collection.

payload

type: mixed default: null

This option can be used to attach arbitrary domain-specific data to a constraint. The configured payload
is not used by the Validator component, but its processing is completely up to you.

For example, you may want to use several error levels to present failed constraints differently in the front-
end depending on the severity of the error.

PDF brought to you by

generated on May 24, 2018

Chapter 73: Collection | 352

http://sensiolabs.com

Listing 74-1

Chapter 74

Count

Validates that a given collection's (i.e. an array or an object that implements Countable) element count is
between some minimum and maximum value.

Applies to property or method

Options
• min
• max
• minMessage
• maxMessage
• exactMessage
• payload

Class Count1

Validator CountValidator2

Basic Usage

To verify that the emails array field contains between 1 and 5 elements you might add the following:

1
2
3
4
5
6
7
8
9
10
11
12

// src/Entity/Participant.php
namespace App\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Participant
{

/**
* @Assert\Count(
* min = 1,
* max = 5,
* minMessage = "You must specify at least one email",

1. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/Count.html
2. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/CountValidator.html

PDF brought to you by

generated on May 24, 2018

Chapter 74: Count | 353

http://sensiolabs.com

13
14
15
16
17

* maxMessage = "You cannot specify more than {{ limit }} emails"
*)
*/
protected $emails = array();

}

Options

min

type: integer

This required option is the "min" count value. Validation will fail if the given collection elements count
is less than this min value.

max

type: integer

This required option is the "max" count value. Validation will fail if the given collection elements count
is greater than this max value.

minMessage

type: string default: This collection should contain {{ limit }} elements or
more.

The message that will be shown if the underlying collection elements count is less than the min option.

maxMessage

type: string default: This collection should contain {{ limit }} elements or
less.

The message that will be shown if the underlying collection elements count is more than the max option.

exactMessage

type: string default: This collection should contain exactly {{ limit }}
elements.

The message that will be shown if min and max values are equal and the underlying collection elements
count is not exactly this value.

payload

type: mixed default: null

This option can be used to attach arbitrary domain-specific data to a constraint. The configured payload
is not used by the Validator component, but its processing is completely up to you.

For example, you may want to use several error levels to present failed constraints differently in the front-
end depending on the severity of the error.

PDF brought to you by

generated on May 24, 2018

Chapter 74: Count | 354

http://sensiolabs.com

Listing 75-1

Chapter 75

UniqueEntity

Validates that a particular field (or fields) in a Doctrine entity is (are) unique. This is commonly used, for
example, to prevent a new user to register using an email address that already exists in the system.

Applies to class

Options
• fields
• message
• em
• repositoryMethod
• entityClass
• errorPath
• ignoreNull
• payload

Class UniqueEntity1

Validator UniqueEntityValidator2

Basic Usage

Suppose you have a User entity that has an email field. You can use the UniqueEntity constraint to
guarantee that the email field remains unique between all of the constraints in your user table:

1
2
3
4
5
6
7
8

// src/Entity/Author.php
namespace App\Entity;

use Symfony\Component\Validator\Constraints as Assert;
use Doctrine\ORM\Mapping as ORM;

// DON'T forget this use statement!!!
use Symfony\Bridge\Doctrine\Validator\Constraints\UniqueEntity;

1. https://api.symfony.com/4.0/Symfony/Bridge/Doctrine/Validator/Constraints/UniqueEntity.html
2. https://api.symfony.com/4.0/Symfony/Bridge/Doctrine/Validator/Constraints/UniqueEntityValidator.html

PDF brought to you by

generated on May 24, 2018

Chapter 75: UniqueEntity | 355

http://sensiolabs.com

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

/**
* @ORM\Entity
* @UniqueEntity("email")
*/
class Author
{

/**
* @var string $email
*
* @ORM\Column(name="email", type="string", length=255, unique=true)
* @Assert\Email()
*/
protected $email;

// ...
}

Options

fields

type: array | string [default option]

This required option is the field (or list of fields) on which this entity should be unique. For example,
if you specified both the email and name field in a single UniqueEntity constraint, then it would
enforce that the combination value is unique (e.g. two users could have the same email, as long as they
don't have the same name also).

If you need to require two fields to be individually unique (e.g. a unique email and a unique username),
you use two UniqueEntity entries, each with a single field.

message

type: string default: This value is already used.

The message that's displayed when this constraint fails. This message is always mapped to the first field
causing the violation, even when using multiple fields in the constraint.

Messages can include the {{ value }} placeholder to display a string representation of the invalid
entity. If the entity doesn't define the __toString() method, the following generic value will be used:
"Object of class __CLASS__ identified by <comma separated IDs>"

em

type: string

The name of the entity manager to use for making the query to determine the uniqueness. If it's left blank,
the correct entity manager will be determined for this class. For that reason, this option should probably
not need to be used.

repositoryMethod

type: string default: findBy()

The name of the repository method to use for making the query to determine the uniqueness. If it's left
blank, the findBy() method will be used. This method should return a countable result.

PDF brought to you by

generated on May 24, 2018

Chapter 75: UniqueEntity | 356

http://sensiolabs.com

Listing 75-2

entityClass

type: string

By default, the query performed to ensure the uniqueness uses the repository of the current class instance.
However, in some cases, such as when using Doctrine inheritance mapping, you need to execute the
query in a different repository. Use this option to define the fully-qualified class name (FQCN) of the
Doctrine entity associated with the repository you want to use.

errorPath

type: string default: The name of the first field in fields

If the entity violates the constraint the error message is bound to the first field in fields. If there is more
than one field, you may want to map the error message to another field.

Consider this example:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

// src/Entity/Service.php
namespace App\Entity;

use Doctrine\ORM\Mapping as ORM;
use Symfony\Bridge\Doctrine\Validator\Constraints\UniqueEntity;

/**
* @ORM\Entity
* @UniqueEntity(
* fields={"host", "port"},
* errorPath="port",
* message="This port is already in use on that host."
*)
*/
class Service
{

/**
* @ORM\ManyToOne(targetEntity="Host")
*/
public $host;

/**
* @ORM\Column(type="integer")
*/
public $port;

}

Now, the message would be bound to the port field with this configuration.

ignoreNull

type: boolean default: true

If this option is set to true, then the constraint will allow multiple entities to have a null value for a
field without failing validation. If set to false, only one null value is allowed - if a second entity also
has a null value, validation would fail.

payload

type: mixed default: null

This option can be used to attach arbitrary domain-specific data to a constraint. The configured payload
is not used by the Validator component, but its processing is completely up to you.

For example, you may want to use several error levels to present failed constraints differently in the front-
end depending on the severity of the error.

PDF brought to you by

generated on May 24, 2018

Chapter 75: UniqueEntity | 357

http://sensiolabs.com

Listing 76-1

Chapter 76

Language

Validates that a value is a valid language Unicode language identifier (e.g. fr or zh-Hant).

Applies to property or method

Options
• message
• payload

Class Language1

Validator LanguageValidator2

Basic Usage

1
2
3
4
5
6
7
8
9
10
11
12

// src/Entity/User.php
namespace App\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class User
{

/**
* @Assert\Language()
*/
protected $preferredLanguage;

}

1. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/Language.html
2. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/LanguageValidator.html

PDF brought to you by

generated on May 24, 2018

Chapter 76: Language | 358

http://sensiolabs.com

Options

message

type: string default: This value is not a valid language.

This message is shown if the string is not a valid language code.

payload

type: mixed default: null

This option can be used to attach arbitrary domain-specific data to a constraint. The configured payload
is not used by the Validator component, but its processing is completely up to you.

For example, you may want to use several error levels to present failed constraints differently in the front-
end depending on the severity of the error.

PDF brought to you by

generated on May 24, 2018

Chapter 76: Language | 359

http://sensiolabs.com

Listing 77-1

Chapter 77

Locale

Validates that a value is a valid locale.

The "value" for each locale is either the two letter ISO 639-11 language code (e.g. fr), or the language
code followed by an underscore (_), then the ISO 3166-1 alpha-22 country code (e.g. fr_FR for French/
France).

Applies to property or method

Options
• message
• payload

Class Locale3

Validator LocaleValidator4

Basic Usage

1
2
3
4
5
6
7
8
9
10
11
12

// src/Entity/User.php
namespace App\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class User
{

/**
* @Assert\Locale()
*/
protected $locale;

}

1. https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes

2. https://en.wikipedia.org/wiki/ISO_3166-1#Current_codes
3. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/Locale.html
4. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/LocaleValidator.html

PDF brought to you by

generated on May 24, 2018

Chapter 77: Locale | 360

http://sensiolabs.com

Options

message

type: string default: This value is not a valid locale.

This message is shown if the string is not a valid locale.

payload

type: mixed default: null

This option can be used to attach arbitrary domain-specific data to a constraint. The configured payload
is not used by the Validator component, but its processing is completely up to you.

For example, you may want to use several error levels to present failed constraints differently in the front-
end depending on the severity of the error.

PDF brought to you by

generated on May 24, 2018

Chapter 77: Locale | 361

http://sensiolabs.com

Listing 78-1

Chapter 78

Country

Validates that a value is a valid ISO 3166-1 alpha-21 country code.

Applies to property or method

Options
• message
• payload

Class Country2

Validator CountryValidator3

Basic Usage

1
2
3
4
5
6
7
8
9
10
11
12

// src/Entity/User.php
namespace App\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class User
{

/**
* @Assert\Country()
*/
protected $country;

}

1. https://en.wikipedia.org/wiki/ISO_3166-1#Current_codes
2. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/Country.html
3. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/CountryValidator.html

PDF brought to you by

generated on May 24, 2018

Chapter 78: Country | 362

http://sensiolabs.com

Options

message

type: string default: This value is not a valid country.

This message is shown if the string is not a valid country code.

payload

type: mixed default: null

This option can be used to attach arbitrary domain-specific data to a constraint. The configured payload
is not used by the Validator component, but its processing is completely up to you.

For example, you may want to use several error levels to present failed constraints differently in the front-
end depending on the severity of the error.

PDF brought to you by

generated on May 24, 2018

Chapter 78: Country | 363

http://sensiolabs.com

Chapter 79

File

Validates that a value is a valid "file", which can be one of the following:

• A string (or object with a __toString() method) path to an existing file;
• A valid File1 object (including objects of class UploadedFile2).

This constraint is commonly used in forms with the FileType form field.

If the file you're validating is an image, try the Image constraint.

Applies to property or method

Options
• maxSize
• binaryFormat
• mimeTypes
• maxSizeMessage
• mimeTypesMessage
• disallowEmptyMessage
• notFoundMessage
• notReadableMessage
• uploadIniSizeErrorMessage
• uploadFormSizeErrorMessage
• uploadErrorMessage
• payload

Class File3

Validator FileValidator4

1. https://api.symfony.com/4.0/Symfony/Component/HttpFoundation/File/File.html
2. https://api.symfony.com/4.0/Symfony/Component/HttpFoundation/File/UploadedFile.html
3. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/File.html
4. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/FileValidator.html

PDF brought to you by

generated on May 24, 2018

Chapter 79: File | 364

http://sensiolabs.com

Listing 79-1

Listing 79-2

Basic Usage
This constraint is most commonly used on a property that will be rendered in a form as a FileType field.
For example, suppose you're creating an author form where you can upload a "bio" PDF for the author.
In your form, the bioFile property would be a file type. The Author class might look as follows:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

// src/Entity/Author.php
namespace App\Entity;

use Symfony\Component\HttpFoundation\File\File;

class Author
{

protected $bioFile;

public function setBioFile(File $file = null)
{

$this->bioFile = $file;
}

public function getBioFile()
{

return $this->bioFile;
}

}

To guarantee that the bioFile File object is valid and that it is below a certain file size and a valid
PDF, add the following:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

// src/Entity/Author.php
namespace App\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Author
{

/**
* @Assert\File(
* maxSize = "1024k",
* mimeTypes = {"application/pdf", "application/x-pdf"},
* mimeTypesMessage = "Please upload a valid PDF"
*)
*/
protected $bioFile;

}

The bioFile property is validated to guarantee that it is a real file. Its size and mime type are also
validated because the appropriate options have been specified.

Options

maxSize

type: mixed

If set, the size of the underlying file must be below this file size in order to be valid. The size of the file
can be given in one of the following formats:

Suffix Unit Name value e.g.

byte 1 byte 4096

PDF brought to you by

generated on May 24, 2018

Chapter 79: File | 365

http://sensiolabs.com

Suffix Unit Name value e.g.

k kilobyte 1,000 bytes 200k

M megabyte 1,000,000 bytes 2M

Ki kibibyte 1,024 bytes 32Ki

Mi mebibyte 1,048,576 bytes 8Mi

For more information about the difference between binary and SI prefixes, see Wikipedia: Binary prefix5.

binaryFormat

type: boolean default: null

When true, the sizes will be displayed in messages with binary-prefixed units (KiB, MiB). When false,
the sizes will be displayed with SI-prefixed units (kB, MB). When null, then the binaryFormat will be
guessed from the value defined in the maxSize option.

For more information about the difference between binary and SI prefixes, see Wikipedia: Binary prefix6.

mimeTypes

type: array or string

If set, the validator will check that the mime type of the underlying file is equal to the given mime type (if
a string) or exists in the collection of given mime types (if an array).

You can find a list of existing mime types on the IANA website7.

maxSizeMessage

type: string default: The file is too large ({{ size }} {{ suffix }}). Allowed
maximum size is {{ limit }} {{ suffix }}.

The message displayed if the file is larger than the maxSize option.

mimeTypesMessage

type: string default: The mime type of the file is invalid ({{ type }}). Allowed
mime types are {{ types }}.

The message displayed if the mime type of the file is not a valid mime type per the mimeTypes option.

disallowEmptyMessage

type: string default: An empty file is not allowed.

This constraint checks if the uploaded file is empty (i.e. 0 bytes). If it is, this message is displayed.

notFoundMessage

type: string default: The file could not be found.

5. http://en.wikipedia.org/wiki/Binary_prefix

6. http://en.wikipedia.org/wiki/Binary_prefix

7. http://www.iana.org/assignments/media-types/index.html

PDF brought to you by

generated on May 24, 2018

Chapter 79: File | 366

http://sensiolabs.com

The message displayed if no file can be found at the given path. This error is only likely if the underlying
value is a string path, as a File object cannot be constructed with an invalid file path.

notReadableMessage

type: string default: The file is not readable.

The message displayed if the file exists, but the PHP is_readable() function fails when passed the
path to the file.

uploadIniSizeErrorMessage

type: string default: The file is too large. Allowed maximum size is {{ limit }}
{{ suffix }}.

The message that is displayed if the uploaded file is larger than the upload_max_filesize php.ini
setting.

uploadFormSizeErrorMessage

type: string default: The file is too large.

The message that is displayed if the uploaded file is larger than allowed by the HTML file input field.

uploadErrorMessage

type: string default: The file could not be uploaded.

The message that is displayed if the uploaded file could not be uploaded for some unknown reason, such
as the file upload failed or it couldn't be written to disk.

payload

type: mixed default: null

This option can be used to attach arbitrary domain-specific data to a constraint. The configured payload
is not used by the Validator component, but its processing is completely up to you.

For example, you may want to use several error levels to present failed constraints differently in the front-
end depending on the severity of the error.

PDF brought to you by

generated on May 24, 2018

Chapter 79: File | 367

http://sensiolabs.com

Chapter 80

Image

The Image constraint works exactly like the File constraint, except that its mimeTypes and
mimeTypesMessage options are automatically setup to work for image files specifically.

Additionally it has options so you can validate against the width and height of the image.

See the File constraint for the bulk of the documentation on this constraint.

Applies to property or method

Options
• mimeTypes
• minWidth
• maxWidth
• maxHeight
• minHeight
• maxRatio
• minRatio
• allowSquare
• allowLandscape
• allowPortrait
• detectCorrupted
• mimeTypesMessage
• sizeNotDetectedMessage
• maxWidthMessage
• minWidthMessage
• maxHeightMessage
• minHeightMessage
• maxRatioMessage
• minRatioMessage
• allowSquareMessage
• allowLandscapeMessage
• allowPortraitMessage
• corruptedMessage
• See File for inherited options

PDF brought to you by

generated on May 24, 2018

Chapter 80: Image | 368

http://sensiolabs.com

Listing 80-1

Listing 80-2

Listing 80-3

Class Image1

Validator ImageValidator2

Basic Usage
This constraint is most commonly used on a property that will be rendered in a form as a FileType field.
For example, suppose you're creating an author form where you can upload a "headshot" image for the
author. In your form, the headshot property would be a file type. The Author class might look as
follows:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

// src/Entity/Author.php
namespace App\Entity;

use Symfony\Component\HttpFoundation\File\File;

class Author
{

protected $headshot;

public function setHeadshot(File $file = null)
{

$this->headshot = $file;
}

public function getHeadshot()
{

return $this->headshot;
}

}

To guarantee that the headshot File object is a valid image and that it is between a certain size, add
the following:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

// src/Entity/Author.php
namespace App\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Author
{

/**
* @Assert\Image(
* minWidth = 200,
* maxWidth = 400,
* minHeight = 200,
* maxHeight = 400
*)
*/
protected $headshot;

}

The headshot property is validated to guarantee that it is a real image and that it is between a certain
width and height.

You may also want to guarantee the headshot image to be square. In this case you can disable portrait
and landscape orientations as shown in the following code:

1
2

// src/Entity/Author.php
namespace App\Entity;

1. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/Image.html
2. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/ImageValidator.html

PDF brought to you by

generated on May 24, 2018

Chapter 80: Image | 369

http://sensiolabs.com

3
4
5
6
7
8
9
10
11
12
13
14
15

use Symfony\Component\Validator\Constraints as Assert;

class Author
{

/**
* @Assert\Image(
* allowLandscape = false,
* allowPortrait = false
*)
*/
protected $headshot;

}

You can mix all the constraint options to create powerful validation rules.

Options
This constraint shares all of its options with the File constraint. It does, however, modify two of the
default option values and add several other options.

mimeTypes

type: array or string default: image/*

You can find a list of existing image mime types on the IANA website3.

mimeTypesMessage

type: string default: This file is not a valid image.

minWidth

type: integer

If set, the width of the image file must be greater than or equal to this value in pixels.

maxWidth

type: integer

If set, the width of the image file must be less than or equal to this value in pixels.

minHeight

type: integer

If set, the height of the image file must be greater than or equal to this value in pixels.

maxHeight

type: integer

If set, the height of the image file must be less than or equal to this value in pixels.

3. http://www.iana.org/assignments/media-types/image/index.html

PDF brought to you by

generated on May 24, 2018

Chapter 80: Image | 370

http://sensiolabs.com

minPixels

type: integer

If set, the amount of pixels of the image file must be greater than or equal to this value.

maxPixels

type: integer

If set, the amount of pixels of the image file must be less than or equal to this value.

maxRatio

type: float

If set, the aspect ratio (width / height) of the image file must be less than or equal to this value.

minRatio

type: float

If set, the aspect ratio (width / height) of the image file must be greater than or equal to this value.

allowSquare

type: Boolean default: true

If this option is false, the image cannot be a square. If you want to force a square image, then set leave
this option as its default true value and set allowLandscape and allowPortrait both to false.

allowLandscape

type: Boolean default: true

If this option is false, the image cannot be landscape oriented.

allowPortrait

type: Boolean default: true

If this option is false, the image cannot be portrait oriented.

detectCorrupted

type: boolean default: false

If this option is true, the image contents are validated to ensure that the image is not corrupted.
This validation is done with PHP's imagecreatefromstring4 function, which requires the PHP GD
extension5 to be enabled.

sizeNotDetectedMessage

type: string default: The size of the image could not be detected.

4. https://secure.php.net/manual/en/function.imagecreatefromstring.php

5. http://php.net/manual/en/book.image.php

PDF brought to you by

generated on May 24, 2018

Chapter 80: Image | 371

http://sensiolabs.com

If the system is unable to determine the size of the image, this error will be displayed. This will only occur
when at least one of the size constraint options has been set.

maxWidthMessage

type: string default: The image width is too big ({{ width }}px). Allowed maximum
width is {{ max_width }}px.

The error message if the width of the image exceeds maxWidth.

minWidthMessage

type: string default: The image width is too small ({{ width }}px). Minimum width
expected is {{ min_width }}px.

The error message if the width of the image is less than minWidth.

maxHeightMessage

type: string default: The image height is too big ({{ height }}px). Allowed
maximum height is {{ max_height }}px.

The error message if the height of the image exceeds maxHeight.

minHeightMessage

type: string default: The image height is too small ({{ height }}px). Minimum
height expected is {{ min_height }}px.

The error message if the height of the image is less than minHeight.

maxPixelsMessage

type: string default: The image has to many pixels ({{ pixels }} pixels). Maximum
amount expected is {{ max_pixels }} pixels.

The error message if the amount of pixels of the image exceeds maxPixels.

minPixelsMessage

type: string default: The image has to few pixels ({{ pixels }} pixels). Minimum
amount expected is {{ min_pixels }} pixels.

The error message if the amount of pixels of the image is less than minPixels.

maxRatioMessage

type: string default: The image ratio is too big ({{ ratio }}). Allowed maximum
ratio is {{ max_ratio }}

The error message if the aspect ratio of the image exceeds maxRatio.

minRatioMessage

type: string default: The image ratio is too small ({{ ratio }}). Minimum ratio
expected is {{ min_ratio }}

PDF brought to you by

generated on May 24, 2018

Chapter 80: Image | 372

http://sensiolabs.com

The error message if the aspect ratio of the image is less than minRatio.

allowSquareMessage

type: string default: The image is square ({{ width }}x{{ height }}px). Square
images are not allowed

The error message if the image is square and you set allowSquare to false.

allowLandscapeMessage

type: string default: The image is landscape oriented ({{ width }}x{{ height
}}px). Landscape oriented images are not allowed

The error message if the image is landscape oriented and you set allowLandscape to false.

allowPortraitMessage

type: string default: The image is portrait oriented ({{ width }}x{{ height
}}px). Portrait oriented images are not allowed

The error message if the image is portrait oriented and you set allowPortrait to false.

corruptedMessage

type: string default: The image file is corrupted.

The error message when the detectCorrupted option is enabled and the image is corrupted.

PDF brought to you by

generated on May 24, 2018

Chapter 80: Image | 373

http://sensiolabs.com

Listing 81-1

Chapter 81

CardScheme

This constraint ensures that a credit card number is valid for a given credit card company. It can be used
to validate the number before trying to initiate a payment through a payment gateway.

Applies to property or method

Options
• schemes
• message
• payload

Class CardScheme1

Validator CardSchemeValidator2

Basic Usage

To use the CardScheme validator, simply apply it to a property or method on an object that will contain
a credit card number.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

// src/Entity/Transaction.php
namespace App\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Transaction
{

/**
* @Assert\CardScheme(
* schemes={"VISA"},
* message="Your credit card number is invalid."
*)
*/
protected $cardNumber;

}

1. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/CardScheme.html
2. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/CardSchemeValidator.html

PDF brought to you by

generated on May 24, 2018

Chapter 81: CardScheme | 374

http://sensiolabs.com

Available Options

schemes

type: mixed [default option]

This option is required and represents the name of the number scheme used to validate the credit card
number, it can either be a string or an array. Valid values are:

• AMEX

• CHINA_UNIONPAY

• DINERS

• DISCOVER

• INSTAPAYMENT

• JCB

• LASER

• MAESTRO

• MASTERCARD

• VISA

For more information about the used schemes, see Wikipedia: Issuer identification number (IIN)3.

message

type: string default: Unsupported card type or invalid card number.

The message shown when the value does not pass the CardScheme check.

payload

type: mixed default: null

This option can be used to attach arbitrary domain-specific data to a constraint. The configured payload
is not used by the Validator component, but its processing is completely up to you.

For example, you may want to use several error levels to present failed constraints differently in the front-
end depending on the severity of the error.

3. https://en.wikipedia.org/wiki/Bank_card_number#Issuer_identification_number_.28IIN.29

PDF brought to you by

generated on May 24, 2018

Chapter 81: CardScheme | 375

http://sensiolabs.com

Listing 82-1

Chapter 82

Currency

Validates that a value is a valid 3-letter ISO 42171 currency name.

Applies to property or method

Options
• message
• payload

Class Currency2

Validator CurrencyValidator3

Basic Usage

If you want to ensure that the currency property of an Order is a valid currency, you could do the
following:

1
2
3
4
5
6
7
8
9
10
11
12

// src/Entity/Order.php
namespace App\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Order
{

/**
* @Assert\Currency
*/
protected $currency;

}

1. https://en.wikipedia.org/wiki/ISO_4217
2. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/Currency.html
3. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/CurrencyValidator.html

PDF brought to you by

generated on May 24, 2018

Chapter 82: Currency | 376

http://sensiolabs.com

Options

message

type: string default: This value is not a valid currency.

This is the message that will be shown if the value is not a valid currency.

payload

type: mixed default: null

This option can be used to attach arbitrary domain-specific data to a constraint. The configured payload
is not used by the Validator component, but its processing is completely up to you.

For example, you may want to use several error levels to present failed constraints differently in the front-
end depending on the severity of the error.

PDF brought to you by

generated on May 24, 2018

Chapter 82: Currency | 377

http://sensiolabs.com

Listing 83-1

Chapter 83

Luhn

This constraint is used to ensure that a credit card number passes the Luhn algorithm1. It is useful as a
first step to validating a credit card: before communicating with a payment gateway.

Applies to property or method

Options
• message
• payload

Class Luhn2

Validator LuhnValidator3

Basic Usage
To use the Luhn validator, simply apply it to a property on an object that will contain a credit card
number.

1
2
3
4
5
6
7
8
9
10
11
12

// src/Entity/Transaction.php
namespace App\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Transaction
{

/**
* @Assert\Luhn(message="Please check your credit card number.")
*/
protected $cardNumber;

}

1. https://en.wikipedia.org/wiki/Luhn_algorithm
2. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/Luhn.html
3. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/LuhnValidator.html

PDF brought to you by

generated on May 24, 2018

Chapter 83: Luhn | 378

http://sensiolabs.com

Available Options

message

type: string default: Invalid card number.

The default message supplied when the value does not pass the Luhn check.

payload

type: mixed default: null

This option can be used to attach arbitrary domain-specific data to a constraint. The configured payload
is not used by the Validator component, but its processing is completely up to you.

For example, you may want to use several error levels to present failed constraints differently in the front-
end depending on the severity of the error.

PDF brought to you by

generated on May 24, 2018

Chapter 83: Luhn | 379

http://sensiolabs.com

Listing 84-1

Chapter 84

Iban

This constraint is used to ensure that a bank account number has the proper format of an International
Bank Account Number (IBAN)1. IBAN is an internationally agreed means of identifying bank accounts
across national borders with a reduced risk of propagating transcription errors.

Applies to property or method

Options
• message
• payload

Class Iban2

Validator IbanValidator3

Basic Usage
To use the Iban validator, simply apply it to a property on an object that will contain an International
Bank Account Number.

1
2
3
4
5
6
7
8
9
10
11
12
13
14

// src/Entity/Transaction.php
namespace App\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Transaction
{

/**
* @Assert\Iban(
* message="This is not a valid International Bank Account Number (IBAN)."
*)
*/
protected $bankAccountNumber;

}

1. https://en.wikipedia.org/wiki/International_Bank_Account_Number
2. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/Iban.html
3. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/IbanValidator.html

PDF brought to you by

generated on May 24, 2018

Chapter 84: Iban | 380

http://sensiolabs.com

Available Options

message

type: string default: This is not a valid International Bank Account Number
(IBAN).

The default message supplied when the value does not pass the Iban check.

payload

type: mixed default: null

This option can be used to attach arbitrary domain-specific data to a constraint. The configured payload
is not used by the Validator component, but its processing is completely up to you.

For example, you may want to use several error levels to present failed constraints differently in the front-
end depending on the severity of the error.

PDF brought to you by

generated on May 24, 2018

Chapter 84: Iban | 381

http://sensiolabs.com

Listing 85-1

Chapter 85

Bic

This constraint is used to ensure that a value has the proper format of a Business Identifier Code (BIC)1.
BIC is an internationally agreed means to uniquely identify both financial and non-financial institutions.

Applies to property or method

Options
• message
• payload

Class Bic2

Validator BicValidator3

Basic Usage
To use the Bic validator, simply apply it to a property on an object that will contain a Business Identifier
Code (BIC).

1
2
3
4
5
6
7
8
9
10
11
12

// src/Entity/Transaction.php
namespace App\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Transaction
{

/**
* @Assert\Bic()
*/
protected $businessIdentifierCode;

}

1. https://en.wikipedia.org/wiki/Business_Identifier_Code
2. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/Bic.html
3. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/BicValidator.html

PDF brought to you by

generated on May 24, 2018

Chapter 85: Bic | 382

http://sensiolabs.com

Available Options

message

type: string default: This is not a valid Business Identifier Code (BIC).

The default message supplied when the value does not pass the BIC check.

payload

type: mixed default: null

This option can be used to attach arbitrary domain-specific data to a constraint. The configured payload
is not used by the Validator component, but its processing is completely up to you.

For example, you may want to use several error levels to present failed constraints differently in the front-
end depending on the severity of the error.

PDF brought to you by

generated on May 24, 2018

Chapter 85: Bic | 383

http://sensiolabs.com

Listing 86-1

Chapter 86

Isbn

This constraint validates that an International Standard Book Number (ISBN)1 is either a valid ISBN-10
or a valid ISBN-13.

Applies to property or method

Options
• type
• message
• isbn10Message
• isbn13Message
• bothIsbnMessage
• payload

Class Isbn2

Validator IsbnValidator3

Basic Usage

To use the Isbn validator, simply apply it to a property or method on an object that will contain an
ISBN.

1
2
3
4
5
6
7
8
9
10

// src/Entity/Book.php
namespace App\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Book
{

/**
* @Assert\Isbn(
* type = "isbn10",

1. https://en.wikipedia.org/wiki/Isbn
2. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/Isbn.html
3. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/IsbnValidator.html

PDF brought to you by

generated on May 24, 2018

Chapter 86: Isbn | 384

http://sensiolabs.com

11
12
13
14
15

* message = "This value is not valid."
*)
*/
protected $isbn;

}

Available Options

type

type: string default: null

The type of ISBN to validate against. Valid values are isbn10, isbn13 and null to accept any kind of
ISBN.

message

type: string default: null

The message that will be shown if the value is not valid. If not null, this message has priority over all
the other messages.

isbn10Message

type: string default: This value is not a valid ISBN-10.

The message that will be shown if the type option is isbn10 and the given value does not pass the
ISBN-10 check.

isbn13Message

type: string default: This value is not a valid ISBN-13.

The message that will be shown if the type option is isbn13 and the given value does not pass the
ISBN-13 check.

bothIsbnMessage

type: string default: This value is neither a valid ISBN-10 nor a valid ISBN-13.

The message that will be shown if the type option is null and the given value does not pass any of the
ISBN checks.

payload

type: mixed default: null

This option can be used to attach arbitrary domain-specific data to a constraint. The configured payload
is not used by the Validator component, but its processing is completely up to you.

For example, you may want to use several error levels to present failed constraints differently in the front-
end depending on the severity of the error.

PDF brought to you by

generated on May 24, 2018

Chapter 86: Isbn | 385

http://sensiolabs.com

Listing 87-1

Chapter 87

Issn

Validates that a value is a valid International Standard Serial Number (ISSN)1.

Applies to property or method

Options
• message
• caseSensitive
• requireHyphen
• payload

Class Issn2

Validator IssnValidator3

Basic Usage

1
2
3
4
5
6
7
8
9
10
11
12

// src/Entity/Journal.php
namespace App\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Journal
{

/**
* @Assert\Issn
*/
protected $issn;

}

1. https://en.wikipedia.org/wiki/Issn
2. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/Issn.html
3. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/IssnValidator.html

PDF brought to you by

generated on May 24, 2018

Chapter 87: Issn | 386

http://sensiolabs.com

Options

message

type: String default: This value is not a valid ISSN.

The message shown if the given value is not a valid ISSN.

caseSensitive

type: boolean default: false

The validator will allow ISSN values to end with a lower case 'x' by default. When switching this to true,
the validator requires an upper case 'X'.

requireHyphen

type: boolean default: false

The validator will allow non hyphenated ISSN values by default. When switching this to true, the
validator requires a hyphenated ISSN value.

payload

type: mixed default: null

This option can be used to attach arbitrary domain-specific data to a constraint. The configured payload
is not used by the Validator component, but its processing is completely up to you.

For example, you may want to use several error levels to present failed constraints differently in the front-
end depending on the severity of the error.

PDF brought to you by

generated on May 24, 2018

Chapter 87: Issn | 387

http://sensiolabs.com

Listing 88-1

Chapter 88

Callback

The purpose of the Callback constraint is to create completely custom validation rules and to assign any
validation errors to specific fields on your object. If you're using validation with forms, this means that
you can make these custom errors display next to a specific field, instead of simply at the top of your
form.

This process works by specifying one or more callback methods, each of which will be called during the
validation process. Each of those methods can do anything, including creating and assigning validation
errors.

A callback method itself doesn't fail or return any value. Instead, as you'll see in the example, a
callback method has the ability to directly add validator "violations".

Applies to class

Options
• callback
• payload

Class Callback1

Validator CallbackValidator2

Configuration

1
2
3
4
5
6

// src/Entity/Author.php
namespace App\Entity;

use Symfony\Component\Validator\Constraints as Assert;
use Symfony\Component\Validator\Context\ExecutionContextInterface;

1. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/Callback.html
2. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/CallbackValidator.html

PDF brought to you by

generated on May 24, 2018

Chapter 88: Callback | 388

http://sensiolabs.com

Listing 88-2

Listing 88-3

7
8
9
10
11
12
13
14
15
16

class Author
{

/**
* @Assert\Callback
*/
public function validate(ExecutionContextInterface $context, $payload)
{

// ...
}

}

The Callback Method

The callback method is passed a special ExecutionContextInterface object. You can set
"violations" directly on this object and determine to which field those errors should be attributed:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

// ...
use Symfony\Component\Validator\Context\ExecutionContextInterface;

class Author
{

// ...
private $firstName;

public function validate(ExecutionContextInterface $context, $payload)
{

// somehow you have an array of "fake names"
$fakeNames = array(/* ... */);

// check if the name is actually a fake name
if (in_array($this->getFirstName(), $fakeNames)) {

$context->buildViolation('This name sounds totally fake!')
->atPath('firstName')
->addViolation();

}
}

}

Static Callbacks
You can also use the constraint with static methods. Since static methods don't have access to the object
instance, they receive the object as the first argument:

1
2
3
4
5
6
7
8
9
10
11
12
13

public static function validate($object, ExecutionContextInterface $context, $payload)
{

// somehow you have an array of "fake names"
$fakeNames = array(/* ... */);

// check if the name is actually a fake name
if (in_array($object->getFirstName(), $fakeNames)) {

$context->buildViolation('This name sounds totally fake!')
->atPath('firstName')
->addViolation()

;
}

}

PDF brought to you by

generated on May 24, 2018

Chapter 88: Callback | 389

http://sensiolabs.com

Listing 88-4

Listing 88-5

Listing 88-6

External Callbacks and Closures
If you want to execute a static callback method that is not located in the class of the validated object,
you can configure the constraint to invoke an array callable as supported by PHP's call_user_func3

function. Suppose your validation function is Acme\Validator::validate():

1
2
3
4
5
6
7
8
9
10
11

namespace Acme;

use Symfony\Component\Validator\Context\ExecutionContextInterface;

class Validator
{

public static function validate($object, ExecutionContextInterface $context, $payload)
{

// ...
}

}

You can then use the following configuration to invoke this validator:

1
2
3
4
5
6
7
8
9
10
11

// src/Entity/Author.php
namespace App\Entity;

use Symfony\Component\Validator\Constraints as Assert;

/**
* @Assert\Callback({"Acme\Validator", "validate"})
*/
class Author
{
}

The Callback constraint does not support global callback functions nor is it possible to specify a
global function or a service method as callback. To validate using a service, you should create a
custom validation constraint and add that new constraint to your class.

When configuring the constraint via PHP, you can also pass a closure to the constructor of the Callback
constraint:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

// src/Entity/Author.php
namespace App\Entity;

use Symfony\Component\Validator\Context\ExecutionContextInterface;

use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints as Assert;

class Author
{

public static function loadValidatorMetadata(ClassMetadata $metadata)
{

$callback = function ($object, ExecutionContextInterface $context, $payload) {
// ...

};

$metadata->addConstraint(new Assert\Callback($callback));
}

}

3. https://secure.php.net/manual/en/function.call-user-func.php

PDF brought to you by

generated on May 24, 2018

Chapter 88: Callback | 390

http://sensiolabs.com

Options

callback

type: string, array or Closure [default option]

The callback option accepts three different formats for specifying the callback method:

• A string containing the name of a concrete or static method;
• An array callable with the format array('<Class>', '<method>');
• A closure.

Concrete callbacks receive an ExecutionContextInterface4 instance as only argument.

Static or closure callbacks receive the validated object as the first argument and the
ExecutionContextInterface5 instance as the second argument.

payload

type: mixed default: null

This option can be used to attach arbitrary domain-specific data to a constraint. The configured payload
is not used by the Validator component, but its processing is completely up to you.

For example, you may want to use several error levels to present failed constraints differently in the front-
end depending on the severity of the error.

4. https://api.symfony.com/4.0/Symfony/Component/Validator/Context/ExecutionContextInterface.html

5. https://api.symfony.com/4.0/Symfony/Component/Validator/ExecutionContextInterface.html

PDF brought to you by

generated on May 24, 2018

Chapter 88: Callback | 391

http://sensiolabs.com

Listing 89-1

Chapter 89

Expression

This constraint allows you to use an expression for more complex, dynamic validation. See Basic Usage
for an example. See Callback for a different constraint that gives you similar flexibility.

Applies to class or property/method

Options
• expression
• message
• payload

Class Expression1

Validator ExpressionValidator2

Basic Usage

Imagine you have a class BlogPost with category and isTechnicalPost properties:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

// src/Model/BlogPost.php
namespace App\Model;

use Symfony\Component\Validator\Constraints as Assert;

class BlogPost
{

private $category;

private $isTechnicalPost;

// ...

public function getCategory()
{

return $this->category;

1. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/Expression.html
2. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/ExpressionValidator.html

PDF brought to you by

generated on May 24, 2018

Chapter 89: Expression | 392

http://sensiolabs.com

Listing 89-2

Listing 89-3

17
18
19
20
21
22
23
24
25

}

public function setIsTechnicalPost($isTechnicalPost)
{

$this->isTechnicalPost = $isTechnicalPost;
}

// ...
}

To validate the object, you have some special requirements:
1. If isTechnicalPost is true, then category must be either php or symfony;
2. If isTechnicalPost is false, then category can be anything.

One way to accomplish this is with the Expression constraint:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

// src/Model/BlogPost.php
namespace App\Model;

use Symfony\Component\Validator\Constraints as Assert;

/**
* @Assert\Expression(
* "this.getCategory() in ['php', 'symfony'] or !this.isTechnicalPost()",
* message="If this is a tech post, the category should be either php or symfony!"
*)
*/
class BlogPost
{

// ...
}

The expression option is the expression that must return true in order for validation to pass. To learn
more about the expression language syntax, see The Expression Syntax.

Mapping the Error to a Specific Field

You can also attach the constraint to a specific property and still validate based on the values of the
entire entity. This is handy if you want to attach the error to a specific field. In this context, value
represents the value of isTechnicalPost.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

// src/Model/BlogPost.php
namespace App\Model;

use Symfony\Component\Validator\Constraints as Assert;

class BlogPost
{

// ...

/**
* @Assert\Expression(
* "this.getCategory() in ['php', 'symfony'] or value == false",
* message="If this is a tech post, the category should be either php or symfony!"
*)
*/

private $isTechnicalPost;

// ...
}

For more information about the expression and what variables are available to you, see the expression
option details below.

PDF brought to you by

generated on May 24, 2018

Chapter 89: Expression | 393

http://sensiolabs.com

Available Options

expression

type: string [default option]

The expression that will be evaluated. If the expression evaluates to a false value (using ==, not ===),
validation will fail.

To learn more about the expression language syntax, see The Expression Syntax.

Inside of the expression, you have access to up to 2 variables:

Depending on how you use the constraint, you have access to 1 or 2 variables in your expression:

• this: The object being validated (e.g. an instance of BlogPost);
• value: The value of the property being validated (only available when the constraint is applied

directly to a property);

message

type: string default: This value is not valid.

The default message supplied when the expression evaluates to false.

payload

type: mixed default: null

This option can be used to attach arbitrary domain-specific data to a constraint. The configured payload
is not used by the Validator component, but its processing is completely up to you.

For example, you may want to use several error levels to present failed constraints differently in the front-
end depending on the severity of the error.

PDF brought to you by

generated on May 24, 2018

Chapter 89: Expression | 394

http://sensiolabs.com

Listing 90-1

Chapter 90

All

When applied to an array (or Traversable object), this constraint allows you to apply a collection of
constraints to each element of the array.

Applies to property or method

Options
• constraints
• payload

Class All1

Validator AllValidator2

Basic Usage
Suppose that you have an array of strings and you want to validate each entry in that array:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

// src/Entity/User.php
namespace App\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class User
{

/**
* @Assert\All({
* @Assert\NotBlank,
* @Assert\Length(min=5)
* })
*/
protected $favoriteColors = array();

}

1. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/All.html
2. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/AllValidator.html

PDF brought to you by

generated on May 24, 2018

Chapter 90: All | 395

http://sensiolabs.com

Now, each entry in the favoriteColors array will be validated to not be blank and to be at least 5
characters long.

Options

constraints

type: array [default option]

This required option is the array of validation constraints that you want to apply to each element of the
underlying array.

payload

type: mixed default: null

This option can be used to attach arbitrary domain-specific data to a constraint. The configured payload
is not used by the Validator component, but its processing is completely up to you.

For example, you may want to use several error levels to present failed constraints differently in the front-
end depending on the severity of the error.

PDF brought to you by

generated on May 24, 2018

Chapter 90: All | 396

http://sensiolabs.com

Listing 91-1

Chapter 91

UserPassword

This validates that an input value is equal to the current authenticated user's password. This is useful in
a form where a user can change their password, but needs to enter their old password for security.

This should not be used to validate a login form, since this is done automatically by the security
system.

Applies to property or method

Options
• message
• payload

Class UserPassword1

Validator UserPasswordValidator2

Basic Usage

Suppose you have a ChangePassword class, that's used in a form where the user can change their
password by entering their old password and a new password. This constraint will validate that the old
password matches the user's current password:

1
2
3
4
5
6
7
8
9

// src/Form/Model/ChangePassword.php
namespace App\Form\Model;

use Symfony\Component\Security\Core\Validator\Constraints as SecurityAssert;

class ChangePassword
{

/**
* @SecurityAssert\UserPassword(

1. https://api.symfony.com/4.0/Symfony/Component/Security/Core/Validator/Constraints/UserPassword.html
2. https://api.symfony.com/4.0/Symfony/Component/Security/Core/Validator/Constraints/UserPasswordValidator.html

PDF brought to you by

generated on May 24, 2018

Chapter 91: UserPassword | 397

http://sensiolabs.com

10
11
12
13
14

* message = "Wrong value for your current password"
*)
*/
protected $oldPassword;

}

Options

message

type: message default: This value should be the user current password.

This is the message that's displayed when the underlying string does not match the current user's
password.

payload

type: mixed default: null

This option can be used to attach arbitrary domain-specific data to a constraint. The configured payload
is not used by the Validator component, but its processing is completely up to you.

For example, you may want to use several error levels to present failed constraints differently in the front-
end depending on the severity of the error.

PDF brought to you by

generated on May 24, 2018

Chapter 91: UserPassword | 398

http://sensiolabs.com

Listing 92-1

Listing 92-2

Chapter 92

Valid

This constraint is used to enable validation on objects that are embedded as properties on an object being
validated. This allows you to validate an object and all sub-objects associated with it.

Applies to property or method

Options
• traverse
• payload

Class Valid1

By default the error_bubbling option is enabled for the collection Field Type, which passes the
errors to the parent form. If you want to attach the errors to the locations where they actually occur
you have to set error_bubbling to false.

Basic Usage

In the following example, create two classes Author and Address that both have constraints on their
properties. Furthermore, Author stores an Address instance in the $address property:

1
2
3
4
5
6
7
8

// src/Entity/Address.php
namespace App\Entity;

class Address
{

protected $street;
protected $zipCode;

}

1
2

// src/Entity/Author.php
namespace App\Entity;

1. https://api.symfony.com/4.0/Symfony/Component/Validator/Constraints/Valid.html

PDF brought to you by

generated on May 24, 2018

Chapter 92: Valid | 399

http://sensiolabs.com

Listing 92-3

Listing 92-4

Listing 92-5

3
4
5
6
7
8
9

class Author
{

protected $firstName;
protected $lastName;
protected $address;

}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

// src/Entity/Address.php
namespace App\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Address
{

/**
* @Assert\NotBlank()
*/
protected $street;

/**
* @Assert\NotBlank
* @Assert\Length(max=5)
*/
protected $zipCode;

}

// src/Entity/Author.php
namespace App\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Author
{

/**
* @Assert\NotBlank
* @Assert\Length(min=4)
*/
protected $firstName;

/**
* @Assert\NotBlank
*/
protected $lastName;

protected $address;
}

With this mapping, it is possible to successfully validate an author with an invalid address. To prevent
that, add the Valid constraint to the $address property.

1
2
3
4
5
6
7
8
9
10
11
12

// src/Entity/Author.php
namespace App\Entity;

use Symfony\Component\Validator\Constraints as Assert;

class Author
{

/**
* @Assert\Valid
*/
protected $address;

}

If you validate an author with an invalid address now, you can see that the validation of the Address
fields failed.

PDF brought to you by

generated on May 24, 2018

Chapter 92: Valid | 400

http://sensiolabs.com

1
2

App\Entity\Author.address.zipCode:
This value is too long. It should have 5 characters or less.

Options

traverse

type: boolean default: true

If this constraint is applied to a property that holds an array of objects, then each object in that array will
be validated only if this option is set to true.

payload

type: mixed default: null

This option can be used to attach arbitrary domain-specific data to a constraint. The configured payload
is not used by the Validator component, but its processing is completely up to you.

For example, you may want to use several error levels to present failed constraints differently in the front-
end depending on the severity of the error.

PDF brought to you by

generated on May 24, 2018

Chapter 92: Valid | 401

http://sensiolabs.com

Listing 93-1

Listing 93-2

Chapter 93

Twig Template Form Function and Variable
Reference

When working with forms in a template, there are two powerful things at your disposal:

• Functions for rendering each part of a form;
• Variables for getting any information about any field.

You'll use functions often to render your fields. Variables, on the other hand, are less commonly-used,
but infinitely powerful since you can access a fields label, id attribute, errors and anything else about the
field.

Form Rendering Functions
This reference manual covers all the possible Twig functions available for rendering forms. There are
several different functions available and each is responsible for rendering a different part of a form (e.g.
labels, errors, widgets, etc).

form(view, variables)
Renders the HTML of a complete form.

1
2

{# render the form and change the submission method #}
{{ form(form, {'method': 'GET'}) }}

You will mostly use this helper for prototyping or if you use custom form themes. If you need more
flexibility in rendering the form, you should use the other helpers to render individual parts of the form
instead:

1
2
3

{{ form_start(form) }}
{{ form_errors(form) }}

PDF brought to you by

generated on May 24, 2018

Chapter 93: Twig Template Form Function and Variable Reference | 402

http://sensiolabs.com

Listing 93-3

Listing 93-4

Listing 93-5

Listing 93-6

Listing 93-7

4
5
6
7
8

{{ form_row(form.name) }}
{{ form_row(form.dueDate) }}

{{ form_row(form.submit, { 'label': 'Submit me' }) }}
{{ form_end(form) }}

form_start(view, variables)
Renders the start tag of a form. This helper takes care of printing the configured method and target action
of the form. It will also include the correct enctype property if the form contains upload fields.

1
2

{# render the start tag and change the submission method #}
{{ form_start(form, {'method': 'GET'}) }}

form_end(view, variables)
Renders the end tag of a form.

1 {{ form_end(form) }}

This helper also outputs form_rest() unless you set render_rest to false:

1
2

{# don't render unrendered fields #}
{{ form_end(form, {'render_rest': false}) }}

form_label(view, label, variables)
Renders the label for the given field. You can optionally pass the specific label you want to display as the
second argument.

1
2
3
4
5
6
7
8
9

{{ form_label(form.name) }}

{# The two following syntaxes are equivalent #}
{{ form_label(form.name, 'Your Name', {'label_attr': {'class': 'foo'}}) }}

{{ form_label(form.name, null, {
'label': 'Your name',
'label_attr': {'class': 'foo'}

}) }}

See "More about Form Variables" to learn about the variables argument.

form_errors(view)
Renders any errors for the given field.

1
2
3
4

{{ form_errors(form.name) }}

{# render any "global" errors #}
{{ form_errors(form) }}

PDF brought to you by

generated on May 24, 2018

Chapter 93: Twig Template Form Function and Variable Reference | 403

http://sensiolabs.com

Listing 93-8

Listing 93-9

Listing 93-10

Listing 93-11

form_widget(view, variables)
Renders the HTML widget of a given field. If you apply this to an entire form or collection of fields, each
underlying form row will be rendered.

1
2

{# render a widget, but add a "foo" class to it #}
{{ form_widget(form.name, {'attr': {'class': 'foo'}}) }}

The second argument to form_widget() is an array of variables. The most common variable is attr,
which is an array of HTML attributes to apply to the HTML widget. In some cases, certain types also
have other template-related options that can be passed. These are discussed on a type-by-type basis.
The attributes are not applied recursively to child fields if you're rendering many fields at once (e.g.
form_widget(form)).

See "More about Form Variables" to learn more about the variables argument.

form_row(view, variables)
Renders the "row" of a given field, which is the combination of the field's label, errors and widget.

1
2

{# render a field row, but display a label with text "foo" #}
{{ form_row(form.name, {'label': 'foo'}) }}

The second argument to form_row() is an array of variables. The templates provided in Symfony only
allow to override the label as shown in the example above.

See "More about Form Variables" to learn about the variables argument.

form_rest(view, variables)
This renders all fields that have not yet been rendered for the given form. It's a good idea to always have
this somewhere inside your form as it'll render hidden fields for you and make any fields you forgot to
render more obvious (since it'll render the field for you).

1 {{ form_rest(form) }}

Form Tests Reference

Tests can be executed by using the is operator in Twig to create a condition. Read the Twig
documentation1 for more information.

selectedchoice(selected_value)

This test will check if the current choice is equal to the selected_value or if the current choice is in
the array (when selected_value is an array).

1 <option {% if choice is selectedchoice(value) %} selected="selected"{% endif %} ...>

1. http://twig.sensiolabs.org/doc/templates.html#test-operator

PDF brought to you by

generated on May 24, 2018

Chapter 93: Twig Template Form Function and Variable Reference | 404

http://sensiolabs.com

Listing 93-12

Listing 93-13

More about Form Variables

For a full list of variables, see: Form Variables Reference.

In almost every Twig function above, the final argument is an array of "variables" that are used when
rendering that one part of the form. For example, the following would render the "widget" for a field and
modify its attributes to include a special class:

1
2

{# render a widget, but add a "foo" class to it #}
{{ form_widget(form.name, { 'attr': {'class': 'foo'} }) }}

The purpose of these variables - what they do & where they come from - may not be immediately clear,
but they're incredibly powerful. Whenever you render any part of a form, the block that renders it makes
use of a number of variables. By default, these blocks live inside form_div_layout.html.twig2.

Look at the form_label as an example:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

{% block form_label %}
{% if not compound %}

{% set label_attr = label_attr|merge({'for': id}) %}
{% endif %}

{% if required %}
{% set label_attr = label_attr|merge({

'class': (label_attr.class|default('') ~ ' required')|trim
}) %}

{% endif %}

{% if label is empty %}
{% set label = name|humanize %}

{% endif %}

<label
{% for attrname, attrvalue in label_attr -%}

{{ attrname }}="{{ attrvalue }}"
{%- endfor %}

>
{{ label|trans({}, translation_domain) }}

</label>
{% endblock form_label %}

This block makes use of several variables: compound, label_attr, required, label, name and
translation_domain. These variables are made available by the form rendering system. But more
importantly, these are the variables that you can override when calling form_label() (since in this
example, you're rendering the label).

The exact variables available to override depends on which part of the form you're rendering (e.g. label
versus widget) and which field you're rendering (e.g. a choice widget has an extra expanded option).
If you get comfortable with looking through form_div_layout.html.twig3, you'll always be able to see what
options you have available.

Behind the scenes, these variables are made available to the FormView object of your form when the
Form component calls buildView() and finishView() on each "node" of your form tree. To
see what "view" variables a particular field has, find the source code for the form field (and its parent
fields) and look at the above two functions.

2. https://github.com/symfony/symfony/blob/master/src/Symfony/Bridge/Twig/Resources/views/Form/form_div_layout.html.twig

3. https://github.com/symfony/symfony/blob/master/src/Symfony/Bridge/Twig/Resources/views/Form/form_div_layout.html.twig

PDF brought to you by

generated on May 24, 2018

Chapter 93: Twig Template Form Function and Variable Reference | 405

http://sensiolabs.com

Listing 93-14

Listing 93-15

If you're rendering an entire form at once (or an entire embedded form), the variables argument
will only be applied to the form itself and not its children. In other words, the following will not pass
a "foo" class attribute to all of the child fields in the form:

1
2

{# does **not** work - the variables are not recursive #}
{{ form_widget(form, { 'attr': {'class': 'foo'} }) }}

Form Variables Reference

The following variables are common to every field type. Certain field types may have even more variables
and some variables here only really apply to certain types.

Assuming you have a form variable in your template and you want to reference the variables on the name
field, accessing the variables is done by using a public vars property on the FormView4 object:

1
2
3
4

<label for="{{ form.name.vars.id }}"
class="{{ form.name.vars.required ? 'required' : '' }}">
{{ form.name.vars.label }}

</label>

Variable Usage

form The current FormView instance.

id The id HTML attribute to be rendered.

name The name of the field (e.g. title) - but not the name HTML attribute, which is
full_name.

full_name The name HTML attribute to be rendered.

errors An array of any errors attached to this specific field (e.g. form.title.errors).
Note that you can't use form.errors to determine if a form is valid, since this
only returns "global" errors: some individual fields may have errors. Instead,
use the valid option.

submitted Returns true or false depending on whether the whole form is submitted

valid Returns true or false depending on whether the whole form is valid.

value The value that will be used when rendering (commonly the value HTML
attribute).

disabled If true, disabled="disabled" is added to the field.

required If true, a required attribute is added to the field to activate HTML5 validation.
Additionally, a required class is added to the label.

label The string label that will be rendered.

multipart If true, form_enctype will render enctype="multipart/form-data". This only applies to
the root form element.

attr A key-value array that will be rendered as HTML attributes on the field.

label_attr A key-value array that will be rendered as HTML attributes on the label.

compound Whether or not a field is actually a holder for a group of children fields (for
example, a choice field, which is actually a group of checkboxes.

4. https://api.symfony.com/4.0/Symfony/Component/Form/FormView.html

PDF brought to you by

generated on May 24, 2018

Chapter 93: Twig Template Form Function and Variable Reference | 406

http://sensiolabs.com

Variable Usage

block_prefixes An array of all the names of the parent types.

translation_domain The domain of the translations for this form.

cache_key A unique key which is used for caching.

data The normalized data of the type.

method The method of the current form (POST, GET, etc.).

action The action of the current form.

PDF brought to you by

generated on May 24, 2018

Chapter 93: Twig Template Form Function and Variable Reference | 407

http://sensiolabs.com

Listing 94-1

Chapter 94

Symfony Twig Extensions

Twig is the default template engine for Symfony. By itself, it already contains a lot of built-in functions,
filters, tags and tests. You can learn more about them from the Twig Reference1.

The Symfony framework adds quite a few extra functions, filters, tags and tests to seamlessly integrate the
various Symfony components with Twig templates. The following sections describe these extra features.

Technically, most of the extensions live in the Twig Bridge2. That code might give you some ideas
when you need to write your own Twig extension as described in How to Write a custom Twig
Extension.

This reference only covers the Twig extensions provided by the Symfony framework. You are
probably using some other bundles as well, and those might come with their own extensions not
covered here.

The Twig Extensions repository3 contains some additional Twig extensions that do not belong to the
Twig core, so you might want to have a look at the Twig Extensions documentation4.

Functions

render

1 {{ render(uri, options = []) }}

uriuri

type: string | ControllerReference

1. http://twig.sensiolabs.org/documentation#reference

2. https://github.com/symfony/symfony/tree/master/src/Symfony/Bridge/Twig/Extension

3. https://github.com/twigphp/Twig-extensions

4. http://twig-extensions.readthedocs.io/en/latest/

PDF brought to you by

generated on May 24, 2018

Chapter 94: Symfony Twig Extensions | 408

http://sensiolabs.com

Listing 94-2

Listing 94-3

Listing 94-4

optionsoptions (optional)
type: array default: []

Renders the fragment for the given controller (using the controller function) or URI. For more
information, see How to Embed Controllers in a Template.

The render strategy can be specified in the strategy key of the options.

The URI can be generated by other functions, like path and url.

render_esi

1 {{ render_esi(uri, options = []) }}

uriuri

type: string | ControllerReference

optionsoptions (optional)
type: array default: []

Generates an ESI tag when possible or falls back to the behavior of render function instead. For more
information, see How to Embed Controllers in a Template.

The URI can be generated by other functions, like path and url.

The render_esi() function is an example of the shortcut functions of render. It automatically
sets the strategy based on what's given in the function name, e.g. render_hinclude() will use the
hinclude.js strategy. This works for all render_*() functions.

controller

1 {{ controller(controller, attributes = [], query = []) }}

controllercontroller

type: string

attributesattributes (optional)
type: array default: []

queryquery (optional)
type: array default: []

Returns an instance of ControllerReference to be used with functions like render() and
render_esi().

asset

1 {{ asset(path, packageName = null) }}

PDF brought to you by

generated on May 24, 2018

Chapter 94: Symfony Twig Extensions | 409

http://sensiolabs.com

Listing 94-5

Listing 94-6

Listing 94-7

Listing 94-8

pathpath

type: string

packageNamepackageName (optional)
type: string | null default: null

Returns a public path to path, which takes into account the base path set for the package and the URL
path. More information in Linking to Assets. Symfony provides various cache busting implementations
via the version, version_strategy, and json_manifest_path configuration options.

asset_version

1 {{ asset_version(packageName = null) }}

packageNamepackageName (optional)
type: string | null default: null

Returns the current version of the package, more information in Linking to Assets.

form

1 {{ form(view, variables = []) }}

viewview

type: FormView

variablesvariables (optional)
type: array default: []

Renders the HTML of a complete form, more information in the Twig Form reference.

form_start

1 {{ form_start(view, variables = []) }}

viewview

type: FormView

variablesvariables (optional)
type: array default: []

Renders the HTML start tag of a form, more information in the Twig Form reference.

form_end

1 {{ form_end(view, variables = []) }}

viewview

type: FormView

variablesvariables (optional)
type: array default: []

PDF brought to you by

generated on May 24, 2018

Chapter 94: Symfony Twig Extensions | 410

http://sensiolabs.com

Listing 94-9

Listing 94-10

Listing 94-11

Listing 94-12

Renders the HTML end tag of a form together with all fields that have not been rendered yet, more
information in the Twig Form reference.

form_widget

1 {{ form_widget(view, variables = []) }}

viewview

type: FormView

variablesvariables (optional)
type: array default: []

Renders a complete form or a specific HTML widget of a field, more information in the Twig Form
reference.

form_errors

1 {{ form_errors(view) }}

viewview

type: FormView

Renders any errors for the given field or the global errors, more information in the Twig Form reference.

form_label

1 {{ form_label(view, label = null, variables = []) }}

viewview

type: FormView

labellabel (optional)
type: string default: null

variablesvariables (optional)
type: array default: []

Renders the label for the given field, more information in the Twig Form reference.

form_row

1 {{ form_row(view, variables = []) }}

viewview

type: FormView

variablesvariables (optional)
type: array default: []

Renders the row (the field's label, errors and widget) of the given field, more information in the Twig
Form reference.

PDF brought to you by

generated on May 24, 2018

Chapter 94: Symfony Twig Extensions | 411

http://sensiolabs.com

Listing 94-13

Listing 94-14

Listing 94-15

Listing 94-16

Listing 94-17

form_rest

1 {{ form_rest(view, variables = []) }}

viewview

type: FormView

variablesvariables (optional)
type: array default: []

Renders all fields that have not yet been rendered, more information in the Twig Form reference.

csrf_token

1 {{ csrf_token(intention) }}

intentionintention

type: string

Renders a CSRF token. Use this function if you want CSRF protection without creating a form.

is_granted

1 {{ is_granted(role, object = null, field = null) }}

rolerole

type: string

objectobject (optional)
type: object

fieldfield (optional)
type: string

Returns true if the current user has the required role. Optionally, an object can be pasted to be used by
the voter. More information can be found in Access Control in Templates.

logout_path

1 {{ logout_path(key = null) }}

keykey (optional)
type: string

Generates a relative logout URL for the given firewall. If no key is provided, the URL is generated for the
current firewall the user is logged into.

logout_url

1 {{ logout_url(key = null) }}

keykey (optional)
type: string

PDF brought to you by

generated on May 24, 2018

Chapter 94: Symfony Twig Extensions | 412

http://sensiolabs.com

Listing 94-18

Listing 94-19

Listing 94-20

Listing 94-21

Equal to the logout_path function, but it'll generate an absolute URL instead of a relative one.

path

1 {{ path(name, parameters = [], relative = false) }}

namename

type: string

parametersparameters (optional)
type: array default: []

relativerelative (optional)
type: boolean default: false

Returns the relative URL (without the scheme and host) for the given route. If relative is enabled, it'll
create a path relative to the current path. More information in Linking to Pages.

Read Routing to learn more about the Routing component.

url

1 {{ url(name, parameters = [], schemeRelative = false) }}

namename

type: string

parametersparameters (optional)
type: array default: []

schemeRelativeschemeRelative (optional)
type: boolean default: false

Returns the absolute URL (with scheme and host) for the given route. If schemeRelative is enabled,
it'll create a scheme-relative URL. More information in Linking to Pages.

Read Routing to learn more about the Routing component.

absolute_url

1 {{ absolute_url(path) }}

pathpath

type: string

Returns the absolute URL from the passed relative path. For example, assume you're on the following
page in your app: http://example.com/products/hover-board.

1
2
3
4
5

{{ absolute_url('/human.txt') }}
{# http://example.com/human.txt #}

{{ absolute_url('products_icon.png') }}
{# http://example.com/products/products_icon.png #}

PDF brought to you by

generated on May 24, 2018

Chapter 94: Symfony Twig Extensions | 413

http://sensiolabs.com

Listing 94-22

Listing 94-23

Listing 94-24

Listing 94-25

relative_path

1 {{ relative_path(path) }}

pathpath

type: string

Returns the relative path from the passed absolute URL. For example, assume you're on the following
page in your app: http://example.com/products/hover-board.

1
2
3
4
5

{{ relative_path('http://example.com/human.txt') }}
{# ../human.txt #}

{{ relative_path('http://example.com/products/products_icon.png') }}
{# products_icon.png #}

expression

Creates an Expression5 in Twig. See "Template Expressions".

Filters

humanize

1 {{ text|humanize }}

texttext

type: string

Makes a technical name human readable (i.e. replaces underscores by spaces or transforms camelCase
text like helloWorld to hello world and then capitalizes the string).

trans

1 {{ message|trans(arguments = [], domain = null, locale = null) }}

messagemessage

type: string

argumentsarguments (optional)
type: array default: []

domaindomain (optional)
type: string default: null

localelocale (optional)
type: string default: null

Translates the text into the current language. More information in Translation Filters.

5. https://api.symfony.com/4.0/Symfony/Component/ExpressionLanguage/Expression.html

PDF brought to you by

generated on May 24, 2018

Chapter 94: Symfony Twig Extensions | 414

http://sensiolabs.com

Listing 94-26

Listing 94-27

Listing 94-28

transchoice

1 {{ message|transchoice(count, arguments = [], domain = null, locale = null) }}

messagemessage

type: string

countcount

type: integer

argumentsarguments (optional)
type: array default: []

domaindomain (optional)
type: string default: null

localelocale (optional)
type: string default: null

Translates the text with pluralization support. More information in Translation Filters.

yaml_encode

1 {{ input|yaml_encode(inline = 0, dumpObjects = false) }}

inputinput

type: mixed

inlineinline (optional)
type: integer default: 0

dumpObjectsdumpObjects (optional)
type: boolean default: false

Transforms the input into YAML syntax. See Writing YAML Files for more information.

yaml_dump

1 {{ value|yaml_dump(inline = 0, dumpObjects = false) }}

valuevalue

type: mixed

inlineinline (optional)
type: integer default: 0

dumpObjectsdumpObjects (optional)
type: boolean default: false

Does the same as yaml_encode()6, but includes the type in the output.

6. #reference-yaml_encode

PDF brought to you by

generated on May 24, 2018

Chapter 94: Symfony Twig Extensions | 415

http://sensiolabs.com

Listing 94-29

Listing 94-30

Listing 94-31

Listing 94-32

Listing 94-33

abbr_class

1 {{ class|abbr_class }}

classclass

type: string

Generates an <abbr> element with the short name of a PHP class (the FQCN will be shown in a tooltip
when a user hovers over the element).

abbr_method

1 {{ method|abbr_method }}

methodmethod

type: string

Generates an <abbr> element using the FQCN::method() syntax. If method is Closure, Closure
will be used instead and if method doesn't have a class name, it's shown as a function (method()).

format_args

1 {{ args|format_args }}

argsargs

type: array

Generates a string with the arguments and their types (within elements).

format_args_as_text

1 {{ args|format_args_as_text }}

argsargs

type: array

Equal to the format_args filter, but without using HTML tags.

file_excerpt

1 {{ file|file_excerpt(line, srcContext = 3) }}

filefile

type: string

lineline

type: integer

srcContextsrcContext (optional)
type: integer

PDF brought to you by

generated on May 24, 2018

Chapter 94: Symfony Twig Extensions | 416

http://sensiolabs.com

Listing 94-34

Listing 94-35

Listing 94-36

Listing 94-37

Generates an excerpt of a code file around the given line number. The srcContext argument defines
the total number of lines to display around the given line number (use -1 to display the whole file).

format_file

1 {{ file|format_file(line, text = null) }}

filefile

type: string

lineline

type: integer

texttext (optional)
type: string default: null

Generates the file path inside an <a> element. If the path is inside the kernel root directory, the kernel
root directory path is replaced by kernel.root_dir (showing the full path in a tooltip on hover).

format_file_from_text

1 {{ text|format_file_from_text }}

texttext

type: string

Uses format_file to improve the output of default PHP errors.

file_link

1 {{ file|file_link(line) }}

filefile

type: string

lineline

type: integer

Generates a link to the provided file and line number using a preconfigured scheme.

Tags

form_theme

1 {% form_theme form resources %}

formform

type: FormView

resourcesresources

type: array | string

PDF brought to you by

generated on May 24, 2018

Chapter 94: Symfony Twig Extensions | 417

http://sensiolabs.com

Listing 94-38

Listing 94-39

Listing 94-40

Listing 94-41

Sets the resources to override the form theme for the given form view instance. You can use _self as
resources to set it to the current resource. More information in How to Customize Form Rendering.

trans

1 {% trans with vars from domain into locale %}{% endtrans %}

varsvars (optional)
type: array default: []

domaindomain (optional)
type: string default: string

localelocale (optional)
type: string default: string

Renders the translation of the content. More information in Twig Templates.

transchoice

1 {% transchoice count with vars from domain into locale %}{% endtranschoice %}

countcount

type: integer

varsvars (optional)
type: array default: []

domaindomain (optional)
type: string default: null

localelocale (optional)
type: string default: null

Renders the translation of the content with pluralization support, more information in Twig Templates.

trans_default_domain

1 {% trans_default_domain domain %}

domaindomain

type: string

This will set the default domain in the current template.

stopwatch

1 {% stopwatch 'name' %}...{% endstopwatch %}

This will time the run time of the code inside it and put that on the timeline of the WebProfilerBundle.

PDF brought to you by

generated on May 24, 2018

Chapter 94: Symfony Twig Extensions | 418

http://sensiolabs.com

Listing 94-42

Tests

selectedchoice

1 {% if choice is selectedchoice(selectedValue) %}

choicechoice

type: ChoiceView

selectedValueselectedValue

type: string

Checks if selectedValue was checked for the provided choice field. Using this test is the most effective
way.

Global Variables

app

The app variable is available everywhere and gives access to many commonly needed objects and values.
It is an instance of GlobalVariables7.

The available attributes are:

• app.user, a PHP object representing the current user;
• app.request, a Request8 object;
• app.session, a Session9 object;
• app.environment, a string with the name of the execution environment;
• app.debug, a boolean telling whether the debug mode is enabled in the app;
• app.token, a TokenInterface10 object representing the security token
• app.flashes, returns flash messages from the session

7. https://api.symfony.com/4.0/Symfony/Bundle/FrameworkBundle/Templating/GlobalVariables.html
8. https://api.symfony.com/4.0/Symfony/Component/HttpFoundation/Request.html
9. https://api.symfony.com/4.0/Symfony/Component/HttpFoundation/Session/Session.html
10. https://api.symfony.com/4.0/Symfony/Component/Security/Core/Authentication/Token/TokenInterface.html

PDF brought to you by

generated on May 24, 2018

Chapter 94: Symfony Twig Extensions | 419

http://sensiolabs.com

Chapter 95

Built-in Symfony Service Tags

Service tags are the mechanism used by the DependencyInjection component to flag services that require
special processing, like console commands or Twig extensions.

These are the most common tags provided by Symfony components, but in your application there could
be more tags available provided by third-party bundles:

Tag Name Usage

auto_alias Define aliases based on the value of container parameters

console.command Add a command

controller.argument_value_resolver Register a value resolver for controller arguments such as
Request

data_collector Create a class that collects custom data for the profiler

doctrine.event_listener Add a Doctrine event listener

doctrine.event_subscriber Add a Doctrine event subscriber

form.type Create a custom form field type

form.type_extension Create a custom "form extension"

form.type_guesser Add your own logic for "form type guessing"

kernel.cache_clearer Register your service to be called during the cache clearing
process

kernel.cache_warmer Register your service to be called during the cache warming
process

kernel.event_listener Listen to different events/hooks in Symfony

kernel.event_subscriber To subscribe to a set of different events/hooks in Symfony

kernel.fragment_renderer Add new HTTP content rendering strategies

monolog.logger Logging with a custom logging channel

monolog.processor Add a custom processor for logging

PDF brought to you by

generated on May 24, 2018

Chapter 95: Built-in Symfony Service Tags | 420

http://sensiolabs.com

Listing 95-1

Listing 95-2

Tag Name Usage

routing.loader Register a custom service that loads routes

routing.expression_language_provider Register a provider for expression language functions in
routing

security.expression_language_provider Register a provider for expression language functions in
security

security.voter Add a custom voter to Symfony's authorization logic

security.remember_me_aware To allow remember me authentication

serializer.encoder Register a new encoder in the serializer service

serializer.normalizer Register a new normalizer in the serializer service

swiftmailer.default.plugin Register a custom SwiftMailer Plugin

templating.helper Make your service available in PHP templates

translation.loader Register a custom service that loads translations

translation.extractor Register a custom service that extracts translation messages
from a file

translation.dumper Register a custom service that dumps translation messages

twig.extension Register a custom Twig Extension

twig.loader Register a custom service that loads Twig templates

validator.constraint_validator Create your own custom validation constraint

validator.initializer Register a service that initializes objects before validation

auto_alias
Purpose: Define aliases based on the value of container parameters

Consider the following configuration that defines three different but related services:

1
2
3
4
5
6
7
8
9
10

services:
app.mysql_lock:

class: App\Lock\MysqlLock
public: false

app.postgresql_lock:
class: App\Lock\PostgresqlLock
public: false

app.sqlite_lock:
class: App\Lock\SqliteLock
public: false

Instead of dealing with these three services, your application needs a generic app.lock service that
will be an alias to one of these services, depending on some configuration. Thanks to the auto_alias
option, you can automatically create that alias based on the value of a configuration parameter.

Considering that a configuration parameter called database_type exists. Then, the generic app.lock
service can be defined as follows:

1
2
3
4

services:
app.mysql_lock:

...
app.postgresql_lock:

PDF brought to you by

generated on May 24, 2018

Chapter 95: Built-in Symfony Service Tags | 421

http://sensiolabs.com

5
6
7
8
9
10

...
app.sqlite_lock:

...
app.lock:

tags:
- { name: auto_alias, format: "app.%database_type%_lock" }

The format option defines the expression used to construct the name of the service to alias. This
expression can use any container parameter (as usual, wrapping their names with % characters).

When using the auto_alias tag, it's not mandatory to define the aliased services as private.
However, doing that (like in the above example) makes sense most of the times to prevent accessing
those services directly instead of using the generic service alias.

You need to manually add the
Symfony\Component\DependencyInjection\Compiler\AutoAliasServicePass
compiler pass to the container for this feature to work.

console.command
Purpose: Add a command to the application

For details on registering your own commands in the service container, read How to Define Commands
as Services.

controller.argument_value_resolver

Purpose: Register a value resolver for controller arguments such as Request

Value resolvers implement the ArgumentValueResolverInterface1 and are used to resolve
argument values for controllers as described here: Extending Action Argument Resolving.

data_collector
Purpose: Create a class that collects custom data for the profiler

For details on creating your own custom data collection, read the How to Create a custom Data Collector
article.

doctrine.event_listener
Purpose: Add a Doctrine event listener

For details on creating Doctrine event listeners, read the Doctrine Event Listeners and Subscribers article.

1. https://api.symfony.com/4.0/Symfony/Component/HttpKernel/Controller/ArgumentValueResolverInterface.html

PDF brought to you by

generated on May 24, 2018

Chapter 95: Built-in Symfony Service Tags | 422

http://sensiolabs.com

Listing 95-3

Listing 95-4

doctrine.event_subscriber
Purpose: Add a Doctrine event subscriber

For details on creating Doctrine event subscribers, read the Doctrine Event Listeners and Subscribers
article.

form.type
Purpose: Create a custom form field type

For details on creating your own custom form type, read the How to Create a Custom Form Field Type
article.

form.type_extension
Purpose: Create a custom "form extension"

For details on creating Form type extensions, read the How to Create a Form Type Extension article.

form.type_guesser
Purpose: Add your own logic for "form type guessing"

This tag allows you to add your own logic to the form guessing process. By default, form guessing is
done by "guessers" based on the validation metadata and Doctrine metadata (if you're using Doctrine) or
Propel metadata (if you're using Propel).

For information on how to create your own type guesser, see Creating a custom Type Guesser.

kernel.cache_clearer
Purpose: Register your service to be called during the cache clearing process

Cache clearing occurs whenever you call cache:clear command. If your bundle caches files, you
should add custom cache clearer for clearing those files during the cache clearing process.

In order to register your custom cache clearer, first you must create a service class:

1
2
3
4
5
6
7
8
9
10
11
12

// src/Cache/MyClearer.php
namespace App\Cache;

use Symfony\Component\HttpKernel\CacheClearer\CacheClearerInterface;

class MyClearer implements CacheClearerInterface
{

public function clear($cacheDirectory)
{

// clear your cache
}

}

If you're using the default services.yaml configuration, your service will be automatically tagged with
kernel.cache_clearer. But, you can also register it manually:

PDF brought to you by

generated on May 24, 2018

Chapter 95: Built-in Symfony Service Tags | 423

http://sensiolabs.com

Listing 95-5

Listing 95-6

1
2
3

services:
App\Cache\MyClearer:

tags: [kernel.cache_clearer]

kernel.cache_warmer
Purpose: Register your service to be called during the cache warming process

Cache warming occurs whenever you run the cache:warmup or cache:clear command (unless you
pass --no-warmup to cache:clear). It is also run when handling the request, if it wasn't done by one
of the commands yet.

The purpose is to initialize any cache that will be needed by the application and prevent the first user
from any significant "cache hit" where the cache is generated dynamically.

To register your own cache warmer, first create a service that implements the
CacheWarmerInterface2 interface:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

// src/Cache/MyCustomWarmer.php
namespace App\Cache;

use Symfony\Component\HttpKernel\CacheWarmer\CacheWarmerInterface;

class MyCustomWarmer implements CacheWarmerInterface
{

public function warmUp($cacheDirectory)
{

// ... do some sort of operations to "warm" your cache
}

public function isOptional()
{

return true;
}

}

The isOptional() method should return true if it's possible to use the application without calling this
cache warmer. In Symfony, optional warmers are always executed by default (you can change this by
using the --no-optional-warmers option when executing the command).

If you're using the default services.yaml configuration, your service will be automatically tagged with
kernel.cache_warmer. But, you can also register it manually:

1
2
3
4

services:
App\Cache\MyCustomWarmer:

tags:
- { name: kernel.cache_warmer, priority: 0 }

The priority value is optional and defaults to 0. The higher the priority, the sooner it gets
executed.

If your cache warmer fails its execution because of any exception, Symfony won't try to execute it
again for the next requests. Therefore, your application and/or bundles should be prepared for when
the contents generated by the cache warmer are not available.

2. https://api.symfony.com/4.0/Symfony/Component/HttpKernel/CacheWarmer/CacheWarmerInterface.html

PDF brought to you by

generated on May 24, 2018

Chapter 95: Built-in Symfony Service Tags | 424

http://sensiolabs.com

Listing 95-7

Core Cache Warmers

Cache Warmer Class Name Priority

TemplatePathsCacheWarmer3 20

RouterCacheWarmer4 0

TemplateCacheCacheWarmer5 0

kernel.event_listener
Purpose: To listen to different events/hooks in Symfony

During the execution of a Symfony application, different events are triggered and you can also dispatch
custom events. This tag allows you to hook your own classes into any of those events.

For a full example of this listener, read the Events and Event Listeners article.

Core Event Listener Reference

For the reference of Event Listeners associated with each kernel event, see the Symfony Events Reference.

kernel.event_subscriber
Purpose: To subscribe to a set of different events/hooks in Symfony

This is an alternative way to create an event listener, and is the recommended way (instead of using
kernel.event_listener). See Creating an Event Subscriber.

kernel.fragment_renderer
Purpose: Add a new HTTP content rendering strategy

To add a new rendering strategy - in addition to the core strategies like EsiFragmentRenderer -
create a class that implements FragmentRendererInterface6, register it as a service, then tag it with
kernel.fragment_renderer.

monolog.logger
Purpose: To use a custom logging channel with Monolog

Monolog allows you to share its handlers between several logging channels. The logger service uses the
channel app but you can change the channel when injecting the logger in a service.

1
2
3
4
5

services:
App\Log\CustomLogger:

arguments: ['@logger']
tags:

- { name: monolog.logger, channel: app }

3. https://api.symfony.com/4.0/Symfony/Bundle/FrameworkBundle/CacheWarmer/TemplatePathsCacheWarmer.html
4. https://api.symfony.com/4.0/Symfony/Bundle/FrameworkBundle/CacheWarmer/RouterCacheWarmer.html
5. https://api.symfony.com/4.0/Symfony/Bundle/TwigBundle/CacheWarmer/TemplateCacheCacheWarmer.html

6. https://api.symfony.com/4.0/Symfony/Component/HttpKernel/Fragment/FragmentRendererInterface.html

PDF brought to you by

generated on May 24, 2018

Chapter 95: Built-in Symfony Service Tags | 425

http://sensiolabs.com

Listing 95-8

Listing 95-9

Listing 95-10

Listing 95-11

You can also configure custom channels in the configuration and retrieve the corresponding logger
service from the service container directly (see Configure Additional Channels without Tagged
Services).

monolog.processor
Purpose: Add a custom processor for logging

Monolog allows you to add processors in the logger or in the handlers to add extra data in the records.
A processor receives the record as an argument and must return it after adding some extra data in the
extra attribute of the record.

The built-in IntrospectionProcessor can be used to add the file, the line, the class and the method
where the logger was triggered.

You can add a processor globally:

1
2
3

services:
Monolog\Processor\IntrospectionProcessor:

tags: [monolog.processor]

If your service is not a callable (using __invoke()) you can add the method attribute in the tag to
use a specific method.

You can add also a processor for a specific handler by using the handler attribute:

1
2
3
4

services:
Monolog\Processor\IntrospectionProcessor:

tags:
- { name: monolog.processor, handler: firephp }

You can also add a processor for a specific logging channel by using the channel attribute. This will
register the processor only for the security logging channel used in the Security component:

1
2
3
4

services:
Monolog\Processor\IntrospectionProcessor:

tags:
- { name: monolog.processor, channel: security }

You cannot use both the handler and channel attributes for the same tag as handlers are shared
between all channels.

routing.loader
Purpose: Register a custom service that loads routes

To enable a custom routing loader, add it as a regular service in one of your configuration and tag it with
routing.loader:

1
2
3

services:
App\Routing\CustomLoader:

tags: [routing.loader]

PDF brought to you by

generated on May 24, 2018

Chapter 95: Built-in Symfony Service Tags | 426

http://sensiolabs.com

For more information, see How to Create a custom Route Loader.

routing.expression_language_provider
Purpose: Register a provider for expression language functions in routing

This tag is used to automatically register expression function providers for the routing expression
component. Using these providers, you can add custom functions to the routing expression language.

security.expression_language_provider
Purpose: Register a provider for expression language functions in security

This tag is used to automatically register expression function providers for the security expression
component. Using these providers, you can add custom functions to the security expression language.

security.remember_me_aware
Purpose: To allow remember me authentication

This tag is used internally to allow remember-me authentication to work. If you have a custom
authentication method where a user can be remember-me authenticated, then you may need to use this
tag.

If your custom authentication factory extends AbstractFactory7 and your custom authentication
listener extends AbstractAuthenticationListener8, then your custom authentication listener will
automatically have this tagged applied and it will function automatically.

security.voter
Purpose: To add a custom voter to Symfony's authorization logic

When you call isGranted() on Symfony's authorization checker, a system of "voters" is used behind
the scenes to determine if the user should have access. The security.voter tag allows you to add
your own custom voter to that system.

For more information, read the How to Use Voters to Check User Permissions article.

serializer.encoder

Purpose: Register a new encoder in the serializer service

The class that's tagged should implement the EncoderInterface9 and DecoderInterface10.

For more details, see How to Use the Serializer.

7. https://api.symfony.com/4.0/Symfony/Bundle/SecurityBundle/DependencyInjection/Security/Factory/AbstractFactory.html

8. https://api.symfony.com/4.0/Symfony/Component/Security/Http/Firewall/AbstractAuthenticationListener.html

9. https://api.symfony.com/4.0/Symfony/Component/Serializer/Encoder/EncoderInterface.html

10. https://api.symfony.com/4.0/Symfony/Component/Serializer/Encoder/DecoderInterface.html

PDF brought to you by

generated on May 24, 2018

Chapter 95: Built-in Symfony Service Tags | 427

http://sensiolabs.com

Listing 95-12

serializer.normalizer
Purpose: Register a new normalizer in the Serializer service

The class that's tagged should implement the NormalizerInterface11 and
DenormalizerInterface12.

For more details, see How to Use the Serializer.

The priorities of the default normalizers can be found in the
registerSerializerConfiguration()13 method.

swiftmailer.default.plugin
Purpose: Register a custom SwiftMailer Plugin

If you're using a custom SwiftMailer plugin (or want to create one), you can register it with SwiftMailer
by creating a service for your plugin and tagging it with swiftmailer.default.plugin (it has no
options).

default in this tag is the name of the mailer. If you have multiple mailers configured or have
changed the default mailer name for some reason, you should change it to the name of your mailer
in order to use this tag.

A SwiftMailer plugin must implement the Swift_Events_EventListener interface. For more
information on plugins, see SwiftMailer's Plugin Documentation14.

Several SwiftMailer plugins are core to Symfony and can be activated via different configuration. For
details, see SwiftmailerBundle Configuration ("swiftmailer").

templating.helper
Purpose: Make your service available in PHP templates

To enable a custom template helper, add it as a regular service in one of your configuration, tag it with
templating.helper and define an alias attribute (the helper will be accessible via this alias in the
templates):

1
2
3
4

services:
App\Templating\AppHelper:

tags:
- { name: templating.helper, alias: alias_name }

translation.loader
Purpose: To register a custom service that loads translations

11. https://api.symfony.com/4.0/Symfony/Component/Serializer/Normalizer/NormalizerInterface.html

12. https://api.symfony.com/4.0/Symfony/Component/Serializer/Normalizer/DenormalizerInterface.html

13. https://api.symfony.com/4.0/Symfony/Bundle/FrameworkBundle/DependencyInjection/

FrameworkExtension.html#method_registerSerializerConfiguration

14. http://swiftmailer.org/docs/plugins.html

PDF brought to you by

generated on May 24, 2018

Chapter 95: Built-in Symfony Service Tags | 428

http://sensiolabs.com

Listing 95-13

Listing 95-14

By default, translations are loaded from the filesystem in a variety of different formats (YAML, XLIFF,
PHP, etc).

Learn how to load custom formats in the components section.

Now, register your loader as a service and tag it with translation.loader:

1
2
3
4

services:
App\Translation\MyCustomLoader:

tags:
- { name: translation.loader, alias: bin }

The alias option is required and very important: it defines the file "suffix" that will be used for the
resource files that use this loader. For example, suppose you have some custom bin format that you
need to load. If you have a bin file that contains French translations for the messages domain, then
you might have a file translations/messages.fr.bin.

When Symfony tries to load the bin file, it passes the path to your custom loader as the $resource
argument. You can then perform any logic you need on that file in order to load your translations.

If you're loading translations from a database, you'll still need a resource file, but it might either be blank
or contain a little bit of information about loading those resources from the database. The file is key to
trigger the load() method on your custom loader.

translation.extractor
Purpose: To register a custom service that extracts messages from a file

When executing the translation:update command, it uses extractors to extract translation
messages from a file. By default, the Symfony Framework has a TwigExtractor15 and a
PhpExtractor16, which help to find and extract translation keys from Twig templates and PHP files.

You can create your own extractor by creating a class that implements ExtractorInterface17 and
tagging the service with translation.extractor. The tag has one required option: alias, which
defines the name of the extractor:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

// src/Acme/DemoBundle/Translation/FooExtractor.php
namespace Acme\DemoBundle\Translation;

use Symfony\Component\Translation\Extractor\ExtractorInterface;
use Symfony\Component\Translation\MessageCatalogue;

class FooExtractor implements ExtractorInterface
{

protected $prefix;

/**
* Extracts translation messages from a template directory to the catalogue.
*/
public function extract($directory, MessageCatalogue $catalogue)
{

// ...
}

/**
* Sets the prefix that should be used for new found messages.
*/

15. https://api.symfony.com/4.0/Symfony/Bridge/Twig/Translation/TwigExtractor.html

16. https://api.symfony.com/4.0/Symfony/Bundle/FrameworkBundle/Translation/PhpExtractor.html

17. https://api.symfony.com/4.0/Symfony/Component/Translation/Extractor/ExtractorInterface.html

PDF brought to you by

generated on May 24, 2018

Chapter 95: Built-in Symfony Service Tags | 429

http://sensiolabs.com

Listing 95-15

Listing 95-16

22
23
24
25
26

public function setPrefix($prefix)
{

$this->prefix = $prefix;
}

}

1
2
3
4

services:
App\Translation\CustomExtractor:

tags:
- { name: translation.extractor, alias: foo }

translation.dumper
Purpose: To register a custom service that dumps messages to a file

After a translation extractor has extracted all messages from the templates, the dumpers are executed to
dump the messages to a translation file in a specific format.

Symfony already comes with many dumpers:

• CsvFileDumper18

• IcuResFileDumper19

• IniFileDumper20

• MoFileDumper21

• PoFileDumper22

• QtFileDumper23

• XliffFileDumper24

• YamlFileDumper25

You can create your own dumper by extending FileDumper26 or implementing DumperInterface27

and tagging the service with translation.dumper. The tag has one option: alias This is the name
that's used to determine which dumper should be used.

1
2
3
4

services:
App\Translation\JsonFileDumper:

tags:
- { name: translation.dumper, alias: json }

Learn how to dump to custom formats in the components section.

twig.extension
Purpose: To register a custom Twig Extension

To enable a Twig extension, add it as a regular service in one of your configuration and tag it with
twig.extension. If you're using the default services.yaml configuration, the service is auto-registered
and auto-tagged. But, you can also register it manually:

18. https://api.symfony.com/4.0/Symfony/Component/Translation/Dumper/CsvFileDumper.html
19. https://api.symfony.com/4.0/Symfony/Component/Translation/Dumper/IcuResFileDumper.html
20. https://api.symfony.com/4.0/Symfony/Component/Translation/Dumper/IniFileDumper.html
21. https://api.symfony.com/4.0/Symfony/Component/Translation/Dumper/MoFileDumper.html
22. https://api.symfony.com/4.0/Symfony/Component/Translation/Dumper/PoFileDumper.html
23. https://api.symfony.com/4.0/Symfony/Component/Translation/Dumper/QtFileDumper.html
24. https://api.symfony.com/4.0/Symfony/Component/Translation/Dumper/XliffFileDumper.html
25. https://api.symfony.com/4.0/Symfony/Component/Translation/Dumper/YamlFileDumper.html

26. https://api.symfony.com/4.0/Symfony/Component/Translation/Dumper/FileDumper.html

27. https://api.symfony.com/4.0/Symfony/Component/Translation/Dumper/DumperInterface.html

PDF brought to you by

generated on May 24, 2018

Chapter 95: Built-in Symfony Service Tags | 430

http://sensiolabs.com

Listing 95-17

Listing 95-18

Listing 95-19

1
2
3

services:
App\Twig\AppExtension:

tags: [twig.extension]

For information on how to create the actual Twig Extension class, see Twig's documentation28 on the
topic or read the How to Write a custom Twig Extension article.

Before writing your own extensions, have a look at the Twig official extension repository29 which already
includes several useful extensions. For example Intl and its localizeddate filter that formats a date
according to user's locale. These official Twig extensions also have to be added as regular services:

1
2
3

services:
Twig\Extensions\IntlExtension:

tags: [twig.extension]

twig.loader
Purpose: Register a custom service that loads Twig templates

By default, Symfony uses only one Twig Loader30 - FilesystemLoader31. If you need to load Twig
templates from another resource, you can create a service for the new loader and tag it with
twig.loader.

If you use the default services.yaml configuration, the service will be automatically tagged thanks to
autoconfiguration. But, you can also register it manually:

1
2
3
4

services:
App\Twig\CustomLoader:

tags:
- { name: twig.loader, priority: 0 }

The priority value is optional and defaults to 0. The higher priority loaders are tried first.

validator.constraint_validator
Purpose: Create your own custom validation constraint

This tag allows you to create and register your own custom validation constraint. For more information,
read the How to Create a custom Validation Constraint article.

validator.initializer
Purpose: Register a service that initializes objects before validation

This tag provides a very uncommon piece of functionality that allows you to perform some sort of action
on an object right before it's validated. For example, it's used by Doctrine to query for all of the lazily-

28. http://twig.sensiolabs.org/doc/advanced.html#creating-an-extension

29. https://github.com/fabpot/Twig-extensions

30. http://twig.sensiolabs.org/doc/api.html#loaders

31. https://api.symfony.com/4.0/Symfony/Bundle/TwigBundle/Loader/FilesystemLoader.html

PDF brought to you by

generated on May 24, 2018

Chapter 95: Built-in Symfony Service Tags | 431

http://sensiolabs.com

loaded data on an object before it's validated. Without this, some data on a Doctrine entity would appear
to be "missing" when validated, even though this is not really the case.

If you do need to use this tag, just make a new class that implements the
ObjectInitializerInterface32 interface. Then, tag it with the validator.initializer tag (it
has no options).

For an example, see the DoctrineInitializer class inside the Doctrine Bridge.

32. https://api.symfony.com/4.0/Symfony/Component/Validator/ObjectInitializerInterface.html

PDF brought to you by

generated on May 24, 2018

Chapter 95: Built-in Symfony Service Tags | 432

http://sensiolabs.com

Listing 96-1

Chapter 96

Built-in Symfony Events

During the handling of an HTTP request, the Symfony framework (or any application using the
HttpKernel component) dispatches some events which you can use to modify how the request is handled.

Kernel Events

Each event dispatched by the HttpKernel component is a subclass of KernelEvent1, which provides the
following information:
getRequestType()getRequestType()2

Returns the type of the request (HttpKernelInterface::MASTER_REQUEST or HttpKernelInterface::SUB_REQUEST).

getKernel()getKernel()3

Returns the Kernel handling the request.

getRequest()getRequest()4

Returns the current Request being handled.

kernel.request
Event Class: GetResponseEvent5

This event is dispatched very early in Symfony, before the controller is determined. It's useful to add
information to the Request or return a Response early to stop the handling of the request.

Read more on the kernel.request event.

Execute this command to find out which listeners are registered for this event and their priorities:

1 $ php bin/console debug:event-dispatcher kernel.request

1. https://api.symfony.com/4.0/Symfony/Component/HttpKernel/Event/KernelEvent.html
2. https://api.symfony.com/4.0/Symfony/Component/HttpKernel/Event/KernelEvent.html#method_getRequestTypehttps://api.symfony.com/4.0/Symfony/Component/HttpKernel/Event/KernelEvent.html#method_getRequestType
3. https://api.symfony.com/4.0/Symfony/Component/HttpKernel/Event/KernelEvent.html#method_getKernelhttps://api.symfony.com/4.0/Symfony/Component/HttpKernel/Event/KernelEvent.html#method_getKernel
4. https://api.symfony.com/4.0/Symfony/Component/HttpKernel/Event/KernelEvent.html#method_getRequesthttps://api.symfony.com/4.0/Symfony/Component/HttpKernel/Event/KernelEvent.html#method_getRequest

5. https://api.symfony.com/4.0/Symfony/Component/HttpKernel/Event/GetResponseEvent.html

PDF brought to you by

generated on May 24, 2018

Chapter 96: Built-in Symfony Events | 433

http://sensiolabs.com

Listing 96-2

Listing 96-3

Listing 96-4

Listing 96-5

kernel.controller
Event Class: FilterControllerEvent6

This event is dispatched after the controller to be executed has been resolved but before executing it. It's
useful to initialize things later needed by the controller, such as param converters7, and even to change
the controller entirely:

1
2
3
4
5
6
7
8
9

use Symfony\Component\HttpKernel\Event\FilterControllerEvent;

public function onKernelController(FilterControllerEvent $event)
{

// ...

// the controller can be changed to any PHP callable
$event->setController($myCustomController);

}

Read more on the kernel.controller event.

Execute this command to find out which listeners are registered for this event and their priorities:

1 $ php bin/console debug:event-dispatcher kernel.controller

kernel.view
Event Class: GetResponseForControllerResultEvent8

This event is dispatched after the controller has been executed but only if the controller does not return
a Response9 object. It's useful to transform the returned value (e.g. a string with some HTML contents)
into the Response object needed by Symfony:

1
2
3
4
5
6
7
8
9
10
11
12

use Symfony\Component\HttpKernel\Event\GetResponseForControllerResultEvent;
use Symfony\Component\HttpFoundation\Response;

public function onKernelView(GetResponseForControllerResultEvent $event)
{

$value = $event->getControllerResult();
$response = new Response();

// ... somehow customize the Response from the return value

$event->setResponse($response);
}

Read more on the kernel.view event.

Execute this command to find out which listeners are registered for this event and their priorities:

1 $ php bin/console debug:event-dispatcher kernel.view

kernel.response
Event Class: FilterResponseEvent10

6. https://api.symfony.com/4.0/Symfony/Component/HttpKernel/Event/FilterControllerEvent.html

7. https://symfony.com/doc/master/bundles/SensioFrameworkExtraBundle/annotations/converters.html

8. https://api.symfony.com/4.0/Symfony/Component/HttpKernel/Event/GetResponseForControllerResultEvent.html

9. https://api.symfony.com/4.0/Symfony/Component/HttpFoundation/Response.html

PDF brought to you by

generated on May 24, 2018

Chapter 96: Built-in Symfony Events | 434

http://sensiolabs.com

Listing 96-6

Listing 96-7

Listing 96-8

Listing 96-9

Listing 96-10

This event is dispatched after the controller or any kernel.view listener returns a Response object.
It's useful to modify or replace the response before sending it back (e.g. add/modify HTTP headers, add
cookies, etc.):

1
2
3
4
5
6

public function onKernelResponse(FilterResponseEvent $event)
{

$response = $event->getResponse();

// ... modify the response object
}

Read more on the kernel.response event.

Execute this command to find out which listeners are registered for this event and their priorities:

1 $ php bin/console debug:event-dispatcher kernel.response

kernel.finish_request
Event Class: FinishRequestEvent11

This event is dispatched after a sub request has finished. It's useful to reset the global state of the
application (for example, the translator listener resets the translator's locale to the one of the parent
request):

1
2
3
4
5
6
7
8
9

public function onKernelFinishRequest(FinishRequestEvent $event)
{

if (null === $parentRequest = $this->requestStack->getParentRequest()) {
return;

}

// reset the locale of the subrequest to the locale of the parent request
$this->setLocale($parentRequest);

}

Execute this command to find out which listeners are registered for this event and their priorities:

1 $ php bin/console debug:event-dispatcher kernel.finish_request

kernel.terminate
Event Class: PostResponseEvent12

This event is dispatched after the response has been sent (after the execution of the handle()13 method).
It's useful to perform slow or complex tasks that don't need to be completed to send the response (e.g.
sending emails).

Read more on the kernel.terminate event.

Execute this command to find out which listeners are registered for this event and their priorities:

1 $ php bin/console debug:event-dispatcher kernel.terminate

10. https://api.symfony.com/4.0/Symfony/Component/HttpKernel/Event/FilterResponseEvent.html

11. https://api.symfony.com/4.0/Symfony/Component/HttpKernel/Event/FinishRequestEvent.html

12. https://api.symfony.com/4.0/Symfony/Component/HttpKernel/Event/PostResponseEvent.html

13. https://api.symfony.com/4.0/Symfony/Component/HttpKernel/HttpKernel.html#method_handle

PDF brought to you by

generated on May 24, 2018

Chapter 96: Built-in Symfony Events | 435

http://sensiolabs.com

Listing 96-11

Listing 96-12

Listing 96-13

kernel.exception
Event Class: GetResponseForExceptionEvent14

This event is dispatched as soon as an error occurs during the handling of the HTTP request. It's useful
to recover from errors or modify the exception details sent as response:

1
2
3
4
5
6
7
8
9
10
11
12
13
14

use Symfony\Component\HttpKernel\Event\GetResponseForExceptionEvent;
use Symfony\Component\HttpFoundation\Response;

public function onKernelException(GetResponseForExceptionEvent $event)
{

$exception = $event->getException();
$response = new Response();
// setup the Response object based on the caught exception
$event->setResponse($response);

// you can alternatively set a new Exception
// $exception = new \Exception('Some special exception');
// $event->setException($exception);

}

The TwigBundle registers an ExceptionListener15 that forwards the Request to a given
controller defined by the exception_listener.controller parameter.

Symfony uses the following logic to determine the HTTP status code of the response:

• If isClientError()16, isServerError()17 or isRedirect()18 is true, then the status code on your Response object
is used;

• If the original exception implements HttpExceptionInterface19, then getStatusCode() is called on the
exception and used (the headers from getHeaders() are also added);

• If both of the above aren't true, then a 500 status code is used.

If you want to overwrite the status code of the exception response, which you should not without
a good reason, call GetResponseForExceptionEvent::allowCustomResponseCode() first
and then set the status code on the response:

$event->allowCustomResponseCode();
$response = new Response('No Content', 204);
$event->setResponse($response);

The status code sent to the client in the above example will be 204. If $event-
>allowCustomResponseCode() is omitted, then the kernel will set an appropriate status code
based on the type of exception thrown.

Read more on the kernel.exception event.

Execute this command to find out which listeners are registered for this event and their priorities:

1 $ php bin/console debug:event-dispatcher kernel.exception

14. https://api.symfony.com/4.0/Symfony/Component/HttpKernel/Event/GetResponseForExceptionEvent.html

15. https://api.symfony.com/4.0/Symfony/Component/HttpKernel/EventListener/ExceptionListener.html
16. https://api.symfony.com/4.0/Symfony/Component/HttpFoundation/Response.html#method_isClientError
17. https://api.symfony.com/4.0/Symfony/Component/HttpFoundation/Response.html#method_isServerError
18. https://api.symfony.com/4.0/Symfony/Component/HttpFoundation/Response.html#method_isRedirect
19. https://api.symfony.com/4.0/Symfony/Component/HttpKernel/Exception/HttpExceptionInterface.html

PDF brought to you by

generated on May 24, 2018

Chapter 96: Built-in Symfony Events | 436

http://sensiolabs.com

Listing 97-1

Listing 97-2

Chapter 97

Requirements for Running Symfony

Symfony 4.0 requires PHP 7.1.3 or higher to run, in addition to other minor requirements. To make
things simple, Symfony provides a tool to quickly check if your system meets all those requirements. Run
this command to install the tool:

1
2

$ cd your-project/
$ composer require symfony/requirements-checker

Beware that PHP can define a different configuration for the command console and the web server, so
you need to check requirements in both environments.

Checking Requirements for the Web Server

The requirements checker tool creates a file called check.php in the public/ directory of your project.
Open that file with your browser to check the requirements.

Once you've fixed all the reported issues, uninstall the requirements checker to avoid leaking internal
information about your application to visitors:

1
2

$ cd your-project/
$ composer remove symfony/requirements-checker

Checking Requirements for the Command Console
The requirements checker tool adds a script to your Composer configuration to check the requirements
automatically. There's no need to execute any command; if there is any issue, you'll see them in the
console output.

PDF brought to you by

generated on May 24, 2018

Chapter 97: Requirements for Running Symfony | 437

http://sensiolabs.com

	The Reference Book Version: 4.0 generated on May 24, 2018
	

	Contents at a Glance
	FrameworkBundle Configuration ("framework")
	Configuration
	secret
	http_method_override
	trusted_proxies
	ide
	test
	default_locale
	trusted_hosts
	form
	enabled

	csrf_protection
	enabled

	esi
	enabled

	fragments
	enabled
	path

	profiler
	enabled
	collect
	only_exceptions
	only_master_requests
	dsn

	request
	formats

	router
	resource
	type
	http_port
	https_port
	strict_requirements

	session
	storage_id
	handler_id
	name
	cookie_lifetime
	cookie_path
	cookie_domain
	cookie_secure
	cookie_httponly
	gc_divisor
	gc_probability
	gc_maxlifetime
	save_path
	metadata_update_threshold

	assets
	base_path
	base_urls
	packages
	version
	version_format
	version_strategy
	json_manifest_path

	templating
	hinclude_default_template
	form
	resources

	cache
	engines
	loaders

	translator
	enabled
	fallbacks
	logging
	paths

	property_access
	magic_call
	throw_exception_on_invalid_index

	validation
	enabled
	cache
	enable_annotations
	translation_domain
	strict_email
	mapping
	paths

	annotations
	cache
	file_cache_dir
	debug

	serializer
	enabled
	enable_annotations
	name_converter
	circular_reference_handler
	mapping
	paths

	php_errors
	log
	throw

	cache
	app
	system
	directory
	default_doctrine_provider
	default_psr6_provider
	default_redis_provider
	default_memcached_provider
	pools
	name
	adapter
	public
	default_lifetime
	provider
	clearer

	prefix_seed

	lock

	Full Default Configuration

	DoctrineBundle Configuration ("doctrine")
	Full Default Configuration
	Doctrine DBAL Configuration
	Doctrine ORM Configuration
	Shortened Configuration Syntax
	Caching Drivers
	Mapping Configuration
	type
	dir
	prefix
	alias
	is_bundle

	Custom Mapping Entities in a Bundle
	Mapping Entities Outside of a Bundle
	Detecting a Mapping Configuration Format
	Default Value of Dir

	SecurityBundle Configuration ("security")
	Full Default Configuration
	Form Login Configuration
	The Login Form and Process
	login_path
	check_path
	use_forward
	username_parameter
	password_parameter
	post_only

	Redirecting after Login
	always_use_default_target_path
	default_target_path
	target_path_parameter
	use_referer

	Logout Configuration
	invalidate_session

	LDAP functionality
	Authentication
	service
	dn_string
	query_string

	User provider

	Using the PBKDF2 Encoder: Security and Speed
	Using the BCrypt Password Encoder
	Using the Argon2i Password Encoder
	Firewall Context

	SwiftmailerBundle Configuration ("swiftmailer")
	Configuration
	url
	transport
	username
	password
	command
	host
	port
	timeout
	source_ip
	local_domain
	encryption
	auth_mode
	spool
	type
	path

	sender_address
	antiflood
	threshold
	sleep

	delivery_addresses
	delivery_whitelist
	disable_delivery
	logging

	Full Default Configuration
	Using Multiple Mailers

	TwigBundle Configuration ("twig")
	Configuration
	auto_reload
	autoescape
	autoescape_service
	autoescape_service_method
	base_template_class
	cache
	charset
	date
	format
	internal_format
	timezone

	debug
	exception_controller
	number_format
	decimals
	decimal_point
	thousands_separator

	optimizations
	default_path
	paths
	strict_variables

	MonologBundle Configuration ("monolog")
	Full Default Configuration

	WebProfilerBundle Configuration ("web_profiler")
	Configuration
	toolbar
	intercept_redirects
	excluded_ajax_paths

	Full Default Configuration

	DebugBundle Configuration ("debug")
	Configuration
	max_items
	min_depth
	max_string_length
	dump_destination

	Configuring in the Kernel
	Configuration
	Charset
	Kernel Name
	Project Directory
	Cache Directory
	Log Directory

	Form Types Reference
	Supported Field Types
	Text Fields
	Choice Fields
	Date and Time Fields
	Other Fields
	Field Groups
	Hidden Fields
	Buttons
	Base Fields

	TextType Field
	Inherited Options
	data
	disabled
	empty_data
	error_bubbling
	error_mapping
	label
	label_attr
	label_format
	mapped
	required
	trim

	Overridden Options
	compound

	TextareaType Field
	Inherited Options
	attr
	data
	disabled
	empty_data
	error_bubbling
	error_mapping
	label
	label_attr
	label_format
	mapped
	required
	trim

	EmailType Field
	Inherited Options
	data
	disabled
	empty_data
	error_bubbling
	error_mapping
	label
	label_attr
	label_format
	mapped
	required
	trim

	IntegerType Field
	Field Options
	grouping
	rounding_mode

	Overridden Options
	compound
	scale

	Inherited Options
	data
	disabled
	empty_data
	error_bubbling
	error_mapping
	invalid_message
	invalid_message_parameters
	label
	label_attr
	label_format
	mapped
	required

	MoneyType Field
	Field Options
	currency
	divisor
	grouping
	scale

	Overridden Options
	compound

	Inherited Options
	data
	disabled
	empty_data
	error_bubbling
	error_mapping
	invalid_message
	invalid_message_parameters
	label
	label_attr
	label_format
	mapped
	required

	Form Variables

	NumberType Field
	Field Options
	grouping
	scale
	rounding_mode

	Overridden Options
	compound

	Inherited Options
	data
	disabled
	empty_data
	error_bubbling
	error_mapping
	invalid_message
	invalid_message_parameters
	label
	label_attr
	label_format
	mapped
	required

	PasswordType Field
	Field Options
	always_empty

	Overridden Options
	trim

	Inherited Options
	disabled
	empty_data
	error_bubbling
	error_mapping
	label
	label_attr
	label_format
	mapped
	required

	PercentType Field
	Field Options
	scale
	type

	Overridden Options
	compound

	Inherited Options
	data
	disabled
	empty_data
	error_bubbling
	error_mapping
	invalid_message
	invalid_message_parameters
	label
	label_attr
	label_format
	mapped
	required

	SearchType Field
	Inherited Options
	disabled
	empty_data
	error_bubbling
	error_mapping
	label
	label_attr
	label_format
	mapped
	required
	trim

	UrlType Field
	Field Options
	default_protocol

	Inherited Options
	data
	disabled
	empty_data
	error_bubbling
	error_mapping
	label
	label_attr
	label_format
	mapped
	required
	trim

	RangeType Field
	Basic Usage
	Inherited Options
	attr
	data
	disabled
	empty_data
	error_bubbling
	error_mapping
	label
	label_attr
	mapped
	required
	trim

	TelType Field
	Inherited Options
	data
	disabled
	empty_data
	error_bubbling
	error_mapping
	label
	label_attr
	label_format
	mapped
	required
	trim

	ColorType Field
	Inherited Options
	data
	disabled
	empty_data
	error_bubbling
	error_mapping
	label
	label_attr
	label_format
	mapped
	required
	trim

	ChoiceType Field (select drop-downs, radio buttons & checkboxes)
	Example Usage
	Advanced Example (with Objects!)
	Select Tag, Checkboxes or Radio Buttons
	Customizing each Option's Text (Label)
	Grouping Options
	Field Options
	choices
	choice_attr
	choice_label
	choice_loader
	choice_name
	choice_translation_domain
	choice_value
	expanded
	group_by
	multiple
	placeholder
	preferred_choices

	Overridden Options
	compound
	empty_data
	error_bubbling
	trim

	Inherited Options
	attr
	by_reference
	data
	disabled
	error_mapping
	inherit_data
	label
	label_attr
	label_format
	mapped
	required
	translation_domain

	Field Variables

	EntityType Field
	Basic Usage
	Using a Custom Query for the Entities
	Using Choices

	Select Tag, Checkboxes or Radio Buttons
	Field Options
	choice_label
	class
	em
	query_builder

	Overridden Options
	choice_name
	choice_value
	choices
	data_class

	Inherited Options
	choice_attr
	choice_translation_domain
	expanded
	group_by
	multiple
	placeholder
	preferred_choices
	translation_domain
	trim
	data
	disabled
	empty_data
	error_bubbling
	error_mapping
	label
	label_attr
	label_format
	mapped
	required

	CountryType Field
	Overridden Options
	choices

	Inherited Options
	error_bubbling
	error_mapping
	expanded
	multiple
	placeholder
	preferred_choices
	trim
	data
	disabled
	empty_data
	label
	label_attr
	label_format
	mapped
	required

	LanguageType Field
	Overridden Options
	choices

	Inherited Options
	error_bubbling
	error_mapping
	expanded
	multiple
	placeholder
	preferred_choices
	trim
	data
	disabled
	empty_data
	label
	label_attr
	label_format
	mapped
	required

	LocaleType Field
	Overridden Options
	choices

	Inherited Options
	error_bubbling
	error_mapping
	expanded
	multiple
	placeholder
	preferred_choices
	trim
	data
	disabled
	empty_data
	label
	label_attr
	label_format
	mapped
	required

	TimezoneType Field
	Field Options
	input
	regions

	Overridden Options
	choices

	Inherited Options
	expanded
	multiple
	placeholder
	preferred_choices
	trim
	data
	disabled
	empty_data
	error_bubbling
	error_mapping
	label
	label_attr
	label_format
	mapped
	required

	CurrencyType Field
	Overridden Options
	choices

	Inherited Options
	error_bubbling
	expanded
	multiple
	placeholder
	preferred_choices
	trim
	data
	disabled
	empty_data
	label
	label_attr
	label_format
	mapped
	required

	DateType Field
	Basic Usage
	Rendering a single HTML5 Textbox

	Field Options
	choice_translation_domain
	days
	placeholder
	format
	html5
	input
	model_timezone
	months
	view_timezone
	widget
	years

	Overridden Options
	by_reference
	compound
	data_class
	error_bubbling

	Inherited Options
	data
	disabled
	error_mapping
	inherit_data
	invalid_message
	invalid_message_parameters
	mapped

	Field Variables

	DateIntervalType Field
	Basic Usage
	Field Options
	days
	placeholder
	hours
	input
	labels
	minutes
	months
	seconds
	weeks
	widget
	with_days
	with_hours
	with_invert
	with_minutes
	with_months
	with_seconds
	with_weeks
	with_years
	years

	Inherited Options
	data
	disabled
	inherit_data
	invalid_message
	invalid_message_parameters
	mapped

	Field Variables

	DateTimeType Field
	Field Options
	choice_translation_domain
	date_format
	date_widget
	days
	placeholder
	format
	hours
	html5
	input
	minutes
	model_timezone
	months
	seconds
	time_widget
	view_timezone
	widget
	with_minutes
	with_seconds
	years

	Overridden Options
	by_reference
	compound
	data_class
	error_bubbling

	Inherited Options
	data
	disabled
	inherit_data
	invalid_message
	invalid_message_parameters
	mapped

	Field Variables

	TimeType Field
	Basic Usage
	Field Options
	choice_translation_domain
	placeholder
	hours
	html5
	input
	minutes
	model_timezone
	seconds
	view_timezone
	widget
	with_minutes
	with_seconds

	Overridden Options
	by_reference
	compound
	data_class
	error_bubbling

	Inherited Options
	data
	disabled
	error_mapping
	inherit_data
	invalid_message
	invalid_message_parameters
	mapped

	Form Variables

	BirthdayType Field
	Overridden Options
	years

	Inherited Options
	choice_translation_domain
	days
	placeholder
	format
	input
	model_timezone
	months
	view_timezone
	widget
	data
	disabled
	inherit_data
	invalid_message
	invalid_message_parameters
	mapped

	CheckboxType Field
	Example Usage
	Field Options
	value

	Overridden Options
	compound
	empty_data

	Inherited Options
	data
	disabled
	error_bubbling
	error_mapping
	label
	label_attr
	label_format
	mapped
	required

	Form Variables

	FileType Field
	Basic Usage
	Field Options
	multiple

	Overridden Options
	compound
	data_class
	empty_data

	Inherited Options
	disabled
	error_bubbling
	error_mapping
	label
	label_attr
	label_format
	mapped
	required

	Form Variables

	RadioType Field
	Inherited Options
	value
	data
	disabled
	empty_data
	error_bubbling
	error_mapping
	label
	label_attr
	label_format
	mapped
	required

	Form Variables

	CollectionType Field
	Basic Usage
	Adding and Removing Items

	Field Options
	allow_add
	allow_delete
	delete_empty
	entry_options
	entry_type
	prototype
	prototype_data
	prototype_name

	Inherited Options
	by_reference
	empty_data
	error_bubbling
	error_mapping
	label
	label_attr
	label_format
	mapped
	required

	Field Variables

	RepeatedType Field
	Example Usage
	Rendering
	Validation

	Field Options
	first_name
	first_options
	options
	second_name
	second_options
	type

	Overridden Options
	error_bubbling

	Inherited Options
	data
	error_mapping
	invalid_message
	invalid_message_parameters
	mapped

	HiddenType Field
	Overridden Options
	compound
	error_bubbling
	required

	Inherited Options
	data
	error_mapping
	mapped
	property_path

	ButtonType Field
	Inherited Options
	attr
	disabled
	label
	translation_domain

	ResetType Field
	Inherited Options
	attr
	disabled
	label
	label_attr
	translation_domain

	SubmitType Field
	Inherited Options
	attr
	disabled
	label
	label_attr
	label_format
	translation_domain
	validation_groups

	Form Variables

	FormType Field
	Field Options
	action
	allow_extra_fields
	by_reference
	compound
	constraints
	data
	data_class
	empty_data
	error_bubbling
	error_mapping
	extra_fields_message
	inherit_data
	invalid_message
	invalid_message_parameters
	label_attr
	label_format
	mapped
	method
	post_max_size_message
	property_path
	required
	trim

	Inherited Options
	attr
	auto_initialize
	block_name
	disabled
	label
	translation_domain

	Validation Constraints Reference
	Supported Constraints
	Basic Constraints
	String Constraints
	Number Constraints
	Comparison Constraints
	Date Constraints
	Collection Constraints
	File Constraints
	Financial and other Number Constraints
	Other Constraints

	NotBlank
	Basic Usage
	Options
	message
	payload

	Blank
	Basic Usage
	Options
	message
	payload

	NotNull
	Basic Usage
	Options
	message
	payload

	IsNull
	Basic Usage
	Options
	message
	payload

	IsTrue
	Basic Usage
	Options
	message
	payload

	IsFalse
	Basic Usage
	Options
	message
	payload

	Type
	Basic Usage
	Options
	type
	message
	payload

	Email
	Basic Usage
	Options
	strict
	message
	checkMX
	checkHost
	payload

	Length
	Basic Usage
	Options
	min
	max
	charset
	minMessage
	maxMessage
	exactMessage
	payload

	Url
	Basic Usage
	Options
	message
	protocols
	payload
	checkDNS
	dnsMessage

	Regex
	Basic Usage
	Options
	pattern
	htmlPattern
	match
	message
	payload

	Ip
	Basic Usage
	Options
	version
	message
	payload

	Uuid
	Basic Usage
	Options
	message
	strict
	versions
	payload

	Range
	Basic Usage
	Date Ranges
	Options
	min
	max
	minMessage
	maxMessage
	invalidMessage
	payload

	EqualTo
	Basic Usage
	Options
	value
	message
	payload
	propertyPath

	NotEqualTo
	Basic Usage
	Options
	value
	message
	payload
	propertyPath

	IdenticalTo
	Basic Usage
	Options
	value
	message
	payload
	propertyPath

	NotIdenticalTo
	Basic Usage
	Options
	value
	message
	payload
	propertyPath

	LessThan
	Basic Usage
	Comparing Dates
	Options
	value
	message
	payload
	propertyPath

	LessThanOrEqual
	Basic Usage
	Comparing Dates
	Options
	value
	message
	payload
	propertyPath

	GreaterThan
	Basic Usage
	Comparing Dates
	Options
	value
	message
	payload
	propertyPath

	GreaterThanOrEqual
	Basic Usage
	Comparing Dates
	Options
	value
	message
	payload
	propertyPath

	Date
	Basic Usage
	Options
	message
	payload

	DateTime
	Basic Usage
	Options
	format
	message
	payload

	Time
	Basic Usage
	Options
	message
	payload

	Choice
	Basic Usage
	Supplying the Choices with a Callback Function
	Available Options
	choices
	callback
	multiple
	min
	max
	message
	multipleMessage
	minMessage
	maxMessage
	strict
	payload

	Collection
	Basic Usage
	Presence and Absence of Fields
	Required and Optional Field Constraints

	Options
	fields
	allowExtraFields
	extraFieldsMessage
	allowMissingFields
	missingFieldsMessage
	payload

	Count
	Basic Usage
	Options
	min
	max
	minMessage
	maxMessage
	exactMessage
	payload

	UniqueEntity
	Basic Usage
	Options
	fields
	message
	em
	repositoryMethod
	entityClass
	errorPath
	ignoreNull
	payload

	Language
	Basic Usage
	Options
	message
	payload

	Locale
	Basic Usage
	Options
	message
	payload

	Country
	Basic Usage
	Options
	message
	payload

	File
	Basic Usage
	Options
	maxSize
	binaryFormat
	mimeTypes
	maxSizeMessage
	mimeTypesMessage
	disallowEmptyMessage
	notFoundMessage
	notReadableMessage
	uploadIniSizeErrorMessage
	uploadFormSizeErrorMessage
	uploadErrorMessage
	payload

	Image
	Basic Usage
	Options
	mimeTypes
	mimeTypesMessage
	minWidth
	maxWidth
	minHeight
	maxHeight
	minPixels
	maxPixels
	maxRatio
	minRatio
	allowSquare
	allowLandscape
	allowPortrait
	detectCorrupted
	sizeNotDetectedMessage
	maxWidthMessage
	minWidthMessage
	maxHeightMessage
	minHeightMessage
	maxPixelsMessage
	minPixelsMessage
	maxRatioMessage
	minRatioMessage
	allowSquareMessage
	allowLandscapeMessage
	allowPortraitMessage
	corruptedMessage

	CardScheme
	Basic Usage
	Available Options
	schemes
	message
	payload

	Currency
	Basic Usage
	Options
	message
	payload

	Luhn
	Basic Usage
	Available Options
	message
	payload

	Iban
	Basic Usage
	Available Options
	message
	payload

	Bic
	Basic Usage
	Available Options
	message
	payload

	Isbn
	Basic Usage
	Available Options
	type
	message
	isbn10Message
	isbn13Message
	bothIsbnMessage
	payload

	Issn
	Basic Usage
	Options
	message
	caseSensitive
	requireHyphen
	payload

	Callback
	Configuration
	The Callback Method
	Static Callbacks
	External Callbacks and Closures
	Options
	callback
	payload

	Expression
	Basic Usage
	Available Options
	expression
	message
	payload

	All
	Basic Usage
	Options
	constraints
	payload

	UserPassword
	Basic Usage
	Options
	message
	payload

	Valid
	Basic Usage
	Options
	traverse
	payload

	Twig Template Form Function and Variable Reference
	Form Rendering Functions
	form(view, variables)
	form_start(view, variables)
	form_end(view, variables)
	form_label(view, label, variables)
	form_errors(view)
	form_widget(view, variables)
	form_row(view, variables)
	form_rest(view, variables)
	Form Tests Reference
	selectedchoice(selected_value)

	More about Form Variables
	Form Variables Reference

	Symfony Twig Extensions
	Functions
	render
	render_esi
	controller
	asset
	asset_version
	form
	form_start
	form_end
	form_widget
	form_errors
	form_label
	form_row
	form_rest
	csrf_token
	is_granted
	logout_path
	logout_url
	path
	url
	absolute_url
	relative_path
	expression

	Filters
	humanize
	trans
	transchoice
	yaml_encode
	yaml_dump
	abbr_class
	abbr_method
	format_args
	format_args_as_text
	file_excerpt
	format_file
	format_file_from_text
	file_link

	Tags
	form_theme
	trans
	transchoice
	trans_default_domain
	stopwatch

	Tests
	selectedchoice

	Global Variables
	app

	Built-in Symfony Service Tags
	auto_alias
	console.command
	controller.argument_value_resolver
	data_collector
	doctrine.event_listener
	doctrine.event_subscriber
	form.type
	form.type_extension
	form.type_guesser
	kernel.cache_clearer
	kernel.cache_warmer
	Core Cache Warmers

	kernel.event_listener
	Core Event Listener Reference

	kernel.event_subscriber
	kernel.fragment_renderer
	monolog.logger
	monolog.processor
	routing.loader
	routing.expression_language_provider
	security.expression_language_provider
	security.remember_me_aware
	security.voter
	serializer.encoder
	serializer.normalizer
	swiftmailer.default.plugin
	templating.helper
	translation.loader
	translation.extractor
	translation.dumper
	twig.extension
	twig.loader
	validator.constraint_validator
	validator.initializer

	Built-in Symfony Events
	Kernel Events
	kernel.request
	kernel.controller
	kernel.view
	kernel.response
	kernel.finish_request
	kernel.terminate
	kernel.exception

	Requirements for Running Symfony
	Checking Requirements for the Web Server
	Checking Requirements for the Command Console

